Research on vitamins could lead to the design of novel drugs to combat malaria

January 27, 2012
This is Dr. Ivo Tews at the Rigaku Imager for Crystallization Plates. Credit: University of Southampton

New research by scientists at the University of Southampton could lead to the design of more effective drugs to combat malaria.

The research will enable scientists to learn more about the nature of the enzymes required for vitamin biosynthesis by the malaria causing pathogen Plasmodium. Vitamins are required in small amounts, the lack of which leads to deficiencies. Many produce vitamins, and these biosynthetic pathways may provide suitable targets for development of new drugs.

Indeed antifolates targeting vitamin B9 biosynthesis of the malarial parasites have been proven valuable chemotherapeutics for the treatment of malaria, one of the most devastating infectious diseases leading to nearly 250 million cases worldwide and about 1 million deaths annually. Vitamin B6 biosynthesis of the parasite has been discussed as a drug novel target.

A major factor hindering is the high degree of resistance developed by Plasmodium species against currently available drugs. Hence, there is still an urgent need for the identification of targets as well as antimalarial chemotherapeutics.

Using the University's Southampton Diffraction Centre, researchers have now been able to describe the malarial enzymes responsible for Vitamin B6 biosynthesis with atomic 3D structures. Vitamin B6 biosynthesis is a highly organised process involving an enzyme complex of 24 . The assembly from individual proteins was studied by in collaboration with the Boettcher group at the University of Edinburgh.

Dr Ivo Tews, Lecturer in Structural Biology at the University of Southampton, says: "The structural studies explain how these vital enzymes are activated and show the substrate of vitamin B6 biosynthesis bound to give insights into the chemistry of PLP biosynthesis. The enzyme complex has a fascinating internal tunnel for the transfer of reactive reaction intermediates. The studies also discovered an unexpected organisation of enzyme complexes into fibres.

"The new data are a starting point for the development of specific inhibitors that target either the enzyme's active sites or the assembly of the proteins into functional complexes."

The research, which is an EU F6 funded programme for two years, is published in the latest issue of the journal, Structure.

Explore further: Enzymes possible targets for new anti-malaria drugs

Related Stories

Enzymes possible targets for new anti-malaria drugs

September 21, 2011
Researchers at the Perelman School of Medicine at the University of Pennsylvania, Monash University, and Virginia Tech have used a set of novel inhibitors to analyze how the malaria parasite, Plasmodium falciparum, uses enzymes ...

Recommended for you

Exosomes are the missing link to insulin resistance in diabetes

September 21, 2017
Chronic tissue inflammation resulting from obesity is an underlying cause of insulin resistance and type 2 diabetes. But the mechanism by which this occurs has remained cloaked, until now.

Thousands of new microbial communities identified in human body

September 20, 2017
A new study of the human microbiome—the trillions of microbial organisms that live on and within our bodies—has analyzed thousands of new measurements of microbial communities from the gut, skin, mouth, and vaginal microbiome, ...

Study finds immune system is critical to regeneration

September 20, 2017
The answer to regenerative medicine's most compelling question—why some organisms can regenerate major body parts such as hearts and limbs while others, such as humans, cannot—may lie with the body's innate immune system, ...

Immune cells produce wound healing factor, could lead to new IBD treatment

September 20, 2017
Specific immune cells have the ability to produce a healing factor that can promote wound repair in the intestine, a finding that could lead to new, potential therapeutic treatments for inflammatory bowel disease (IBD), according ...

As men's weight rises, sperm health may fall

September 20, 2017
(HealthDay)—A widening waistline may make for shrinking numbers of sperm, new research suggests.

New model may help science overcome the brain's fortress-like barrier

September 19, 2017
Scientists have helped provide a way to better understand how to enable drugs to enter the brain and how cancer cells make it past the blood brain barrier.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.