Alzheimer's drugs may have adverse side effects

February 18, 2012

Alzheimer's disease drugs now being tested in clinical trials may have potentially adverse side effects, according to new Northwestern Medicine research. A study with mice suggests the drugs could act like a bad electrician, causing neurons to be miswired and interfering with their ability to send messages to the brain.

The findings, from the scientist whose original research led to the drug development, are published in the journal Molecular and will be presented Saturday, Feb. 18, at the 2012 annual meeting for the in Vancouver.

"Let's proceed with caution," said Robert Vassar, professor of at Northwestern University Feinberg School of Medicine. "We have to keep our eyes open for potential side effects of these drugs." Ironically, he says, the drugs could impair memory.

The drugs are designed to inhibit BACE1, the enzyme Vassar originally discovered that promotes the development of the of that are a hallmark of Alzheimer's. BACE1 acts as a , cutting up and releasing proteins that form the plaques. Thus, drug developers believed blocking the enzyme might slow the disease.

But in Vassar's new study, he found BACE1 also has a critical role as the brain's electrician. In that role, the enzyme maps out the location of axons, the wires that connect neurons to the brain and the rest of the nervous system. This mapping is called axonal guidance.

Working with mice from which BACE1 was genetically removed, Vassar discovered the animals' olfactory system – used for the sense of smell -- was incorrectly wired. The axons of the olfactory neurons were not wired properly to the olfactory bulb of the brain. The findings show the key role of BACE1 in axonal guidance.

"It's like a badly wired house," Vassar said. "If the electrician doesn't get the wiring pattern correct, your lights won't turn on and the outlets won't work."

The olfactory system is a good model for axonal guidance or wiring. If the axons aren't being properly connected in the olfactory system, Vassar said, the problem likely exists elsewhere in the brain and . The hippocampus could be particularly vulnerable to BACE1 blockers, he noted, because its population of neurons is continually being reborn, which may play a role in forming new memories. The neurons need to grow new axons that in turn must connect them with new targets. Axonal guidance is a continuous need.

"It's not all bad news," Vassar noted. "These BACE1 blockers might be useful at a specific dose that will reduce the amyloid plaques but not high enough to interfere with the wiring. Understanding the normal function of BACE1 may help us avoid potential drug side effects."

Explore further: Experimental Alzheimer's disease drugs might help patients with nerve injuries

Related Stories

Experimental Alzheimer's disease drugs might help patients with nerve injuries

April 13, 2011
Drugs already in development to treat Alzheimer's disease may eventually be tapped for a different purpose altogether: re-growing the ends of injured nerves to relieve pain and paralysis. According to a new Johns Hopkins ...

Poor recycling of BACE1 enzyme could promote Alzheimer's disease

November 21, 2011
Sluggish recycling of a protein-slicing enzyme could promote Alzheimer's disease, according to a study published online on November 21 in The Journal of Cell Biology.

Diametric shift in 2 protein levels spurs Alzheimer's plaque accumulation

December 1, 2011
A diametric shift in the levels of two proteins involved in folding, moving and cutting other proteins enables accumulation of the destructive brain plaque found in Alzheimer's disease, researchers report.

Recommended for you

Scientists discover common obesity and diabetes drug reduces rise in brain pressure

August 23, 2017
Research led by the University of Birmingham, published today in Science Translational Medicine, has discovered that a drug commonly used to treat patients with either obesity or Type II diabetes could be used as a novel ...

Use of brain-computer interface, virtual avatar could help people with gait disabilities

August 23, 2017
Researchers from the University of Houston have shown for the first time that the use of a brain-computer interface augmented with a virtual walking avatar can control gait, suggesting the protocol may help patients recover ...

Researcher working to develop new tool for non-invasive neuromodulation of human brain

August 23, 2017
A UTA researcher is developing a technology that will map and image the effects of infrared light shone on the human brain that may be able to modulate and improve brain waves and circuits at certain spots in the brain.

Physicist reports binary marker of preclinical and clinical Alzheimer's disease

August 23, 2017
A new technique shows high potential for providing a discrete, non-invasive biomarker of Alzheimer's disease (AD) at the individual level during both preclinical and clinical stages. The proposed biomarker has a large effect ...

Firing of neurons changes the cells that insulate them

August 22, 2017
Through their pattern of firing, neurons influence the behavior of the cells that upon maturation will provide insulation of neuronal axons, according to a new study publishing 22 August in the open access journal PLOS Biology ...

Activating brain region creates intense desire to use cocaine

August 22, 2017
Researchers have identified a portion of the brain that intensifies one's desire for certain rewards—in this case, mimicking addiction to cocaine.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

ThanderMAX
not rated yet Feb 19, 2012
But that effect will be observed in developing brain. Unless we make the changes in babies gene, will that be a problem ??

People with alzheimer's have shrinking brain.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.