Brain-imaging technique predicts who will suffer cognitive decline over time

February 13, 2012
These are baseline and follow-up brain scans of a patient who converted to Alzheimer's disease after two years (images to right of white line) that shows high medial temporal binding at baseline (lower left) and follow-up (lower right), but also demonstrates more baseline binding in frontal (upper images) and lateral temporal regions. Warmer colors (yellows, reds indicate higher binding levels. A second patient did not convert to Alzheimer's after two years (images to left of white line) showing medial temporal (lower scans), but very mild frontal (upper scans) binding at baseline and follow-up. Credit: UCLA

Cognitive loss and brain degeneration currently affect millions of adults, and the number will increase, given the population of aging baby boomers. Today, nearly 20 percent of people age 65 or older suffer from mild cognitive impairment and 10 percent have dementia.

UCLA scientists previously developed a brain-imaging tool to help assess the associated with these conditions. The UCLA team now reports in the February issue of the journal that the brain-scan technique effectively tracked and predicted cognitive decline over a two-year period.

The team has created a chemical marker called FDDNP that binds to both and tangle deposits — the hallmarks of Alzheimer's disease — which can then be viewed using a positron emission tomography (PET) scan, providing a "window into the brain." Using this method, researchers are able to pinpoint where in the brain these abnormal protein deposits are accumulating.

"We are finding that this may be a useful neuro-imaging marker that can detect changes early, before symptoms appear, and it may be helpful in tracking changes in the brain over time," said study author Dr. Gary Small, UCLA's Parlow–Solomon Professor on Aging and a professor of psychiatry at the Semel Institute for Neuroscience and Human Behavior at UCLA.

Small noted that FDDNP–PET scanning is the only available brain-imaging technique that can assess tau tangles. Autopsy findings have found that tangles correlate with Alzheimer's disease progression much better than do plaques.

For the study, researchers performed and cognitive assessments on the subjects at baseline and then again two years later. The study involved 43 volunteer participants, with an average age of 64, who did not have dementia. At the start of the study, approximately half (22) of the participants had normal aging and the other half (21) had mild cognitive impairment, or MCI, a condition that increases a person's risk of developing Alzheimer's disease.

Researchers found that for both groups, increases in FDDNP binding in the frontal, posterior cingulate and global areas of the brain at the two-year follow-up correlated with progression of cognitive decline. These areas of the brain are involved in decision-making, complex reasoning, memory and emotions. Higher initial baseline FDDNP binding in both subject groups was associated with a decline in cognitive functioning in areas such as language and attention at the two-year follow-up.

"We found that increases in FDDNP binding in key brain areas correlated with increases in clinical symptoms over time," said study author Dr. Jorge R. Barrio, who holds UCLA's Plott Chair in Gerentology and is a professor of molecular and medical pharmacology at the David Geffen School of Medicine at UCLA. "Initial binding levels were also predictive of future ."

Among the subjects with mild cognitive impairment, the level of initial binding in the frontal and parietal areas of the brain provided the greatest accuracy in identifying those who developed Alzheimer's disease after two years. Of the 21 subjects with MCI, six were diagnosed with Alzheimer's at follow-up, and these six subjects had higher initial frontal and parietal binding values than the other subjects in the MCI group.

In the normal aging subjects, three developed mild after two years. Two of these three participants had had the highest baseline binding values in the temporal, parietal and frontal brain regions among this group.

Researchers said the next step in research will involve a longer duration of follow-up with larger samples of subjects. In addition, the team is using this brain-imaging technique in clinical trials to help track novel therapeutics for brain aging, such as curcumin, a chemical found in turmeric spice.

"Tracking the effectiveness of such treatments may help accelerate drug discovery efforts," Small, the author of the new book "The Alzheimer's Prevention Program," said. "Because FDDNP appears to predict who will develop dementia, it may be particularly useful in tracking the effectiveness of interventions designed to delay the onset of symptoms and eventually prevent the disease."

Small recently received research approval from the U.S. Food and Drug Administration to use FDDNP–PET to study people with to determine whether a high-potency form of curcumin — a spice with anti-amyloid, anti-tau and anti-inflammatory properties — can prevent Alzheimer's disease and the accumulation of plaques and tangles in the brain.

UCLA owns three U.S. patents on the FDDNP . The Office of Intellectual Property at UCLA is actively seeking a commercial partner to bring this promising technology to market.

Small and study authors Jorge R. Barrio and S. C. Huang are among the inventors. Disclosures are listed in the full study.

Explore further: Brain scan identifies patterns of plaques and tangles in adults with Down syndrome

Related Stories

Brain scan identifies patterns of plaques and tangles in adults with Down syndrome

June 13, 2011
In one of the first studies of its kind, UCLA researchers used a unique brain scan to assess the levels of amyloid plaques and neurofibrillary tangles -- the hallmarks of Alzheimer's disease -- in adults with Down syndrome.

Imaging technique IDs plaques, tangles in brains of severely depressed older adults

November 8, 2011
Depression is one of the most common mental disorders in the elderly, but little is known about the underlying biology of its development in older adults.

Test for Alzheimer's disease predicts cognitive decline in Parkinson's disease

December 12, 2011
A method of classifying brain atrophy patterns in Alzheimer's disease patients using MRIs can also detect cognitive decline in Parkinson's disease, according to a new study by researchers from the Perelman School of Medicine ...

Recommended for you

Touching helps build the sexual brain

September 21, 2017
Hormones or sexual experience? Which of these is crucial for the onset of puberty? It seems that when rats are touched on their genitals, their brain changes and puberty accelerates. In a new study publishing September 21 ...

Neuron types in brain are defined by gene activity shaping their communication patterns

September 21, 2017
In a major step forward in research, scientists at Cold Spring Harbor Laboratory (CSHL) today publish in Cell a discovery about the molecular-genetic basis of neuronal cell types. Neurons are the basic building blocks that ...

Gene immunotherapy protects against multiple sclerosis in mice

September 21, 2017
A potent and long-lasting gene immunotherapy approach prevents and reverses symptoms of multiple sclerosis in mice, according to a study published September 21st in the journal Molecular Therapy. Multiple sclerosis is an ...

Your neurons register familiar faces, whether you notice them or not

September 21, 2017
When people see an image of a person they recognize—the famous tennis player Roger Federer or actress Halle Berry, for instance—particular cells light up in the brain. Now, researchers reporting in Current Biology on ...

Highly precise wiring in the cerebral cortex

September 21, 2017
Our brains house extremely complex neuronal circuits whose detailed structures are still largely unknown. This is especially true for the cerebral cortex of mammals, where, among other things, vision, thoughts or spatial ...

Faulty cell signaling derails cerebral cortex development, could it lead to autism?

September 20, 2017
As the embryonic brain develops, an incredibly complex cascade of cellular events occur, starting with progenitors - the originating cells that generate neurons and spur proper cortex development. If this cascade malfunctions ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.