Breakdown of triglycerides in heart muscle boosts cardiac function

February 15, 2012, American Society for Microbiology

The heart relies heavily on oxidation of fatty acids for energy production. However, excess storage of fatty acids as triglycerides, within heart muscle cells, frequently observed in patients with obesity and diabetes, is often associated with cardiac dysfunction. The question remained: was this cause and effect? Now a team of investigators shows that baseline heart function "showed moderate, but significant improvement" in mouse models that overproduce an enzyme that breaks down these triglycerides, says principal investigator Jason Dyck, of the University of Alberta, Edmonton. The research is published in the February Molecular and Cellular Biology.

The investigators showed further that mice that overproduce the enzyme "were able to run 20% longer than the controls when subjected to a ," says first author Petra Kienesberger, of the University of Alberta.

Then, in experiments in which mouse models were surgically constructed to mimic hypertension, the researchers showed that "overproduction of the enzyme protects from the development of cardiac/contractile dysfunction under this pathological condition," says Kienesberger.

"Together, these data demonstrate for the first time that decreased myocardial triglyceride accumulation plays a role in regulating cardiac function at baseline as well as an important protective role in preventing in response to a severe pressure overload, as observed with hypertension," says Dyck.

"These findings are highly relevant to basic and clinical research," says Kienesberger. "They suggest that regulation of cardiac triglyceride content and breakdown plays a central role in mediating cardiac function, and that pharmacological modification of cardiac [enzymatic] activity [to break down triglyceride] could be used as therapy to improve contractile function of the diseased heart. However, it remains to be tested whether reducing triglycerides is also beneficial in obesity and diabetes. This concept… opens new avenues of research not previously identified."

The research was enabled only recently by new genetic tools that specifically target cardiac triglycerides and by a novel , in which triglyceride could be reduced by boosting the enzyme responsible for breaking it down, says Kienesberger.

Explore further: Study: Fountain of youth for your heart?

More information: P.C. Kienesberger, T. Pulinilkunnil, M.M.Y. Sung, J. Nagendran, G. Haemmerle, E.E. Kershaw, M.E. Young, P.E. Light, G.Y. Oudit, R. Zechner, and J.R.B. Dyck, 2012. Myocardial ATGL overexpression decreases the reliance on fatty acid oxidation and protects against pressure overload-induced cardiac dysfunction. Mol. Cell. Biol. 32:740-750.

Related Stories

Study: Fountain of youth for your heart?

November 2, 2007
An age-related decline in heart function is a risk factor for heart disease in the elderly. While many factors contribute to a progressive age-related decline in heart function, alterations in the types of fuels the heart ...

Enzyme prevents fatal heart condition associated with athletes

May 25, 2011
Scientists have discovered an important enzyme molecule that may prevent fatal cardiac disorders associated with cardiac hypertrophy – the leading cause of sudden cardiac death in young athletes.

Researchers identify a molecule that increases the risk of cardiac insufficiency

April 24, 2009
A team of scientists from the Center for Applied Medical Research (CIMA) of the University of Navarra has identified a key enzyme in the development of cardiac insufficiency. This enzyme is involved in the accumulation of ...

Scientists identify key molecular regulator of cardiac hypertrophy

July 18, 2010
Scientists have identified a key molecular regulator of cardiac hypertrophy (enlargement of the heart) that may provide a therapeutic target for a major risk factor of heart failure and early death.

Genetically engineered cardiac stem cells repaired damaged mouse heart

July 19, 2011
Genetically engineered human cardiac stem cells helped repair damaged heart tissue and improved function after a heart attack, in a new animal study.

Enzyme weakens the heart

February 17, 2009
An enzyme makes the mouse heart prone to chronic cardiac insufficiency - if it is suppressed, the heart remains strong despite increased stress. Cardiologists at the Internal Medicine Clinic at Heidelberg University Hospital ...

Recommended for you

Gut protein mutations shield against spikes in glucose

November 20, 2018
Why is it that, despite consuming the same number of calories, sodium and sugar, some people face little risk of diabetes or obesity while others are at higher risk? A new study by investigators at Brigham and Women's Hospital ...

Proteins cooperate to break up energy structures in oxygen starved heart cells

November 19, 2018
During a heart attack, the supply of oxygen to heart cells is decreased. This reduced oxygen level, called hypoxia, causes the cell's powerhouses, the mitochondria, to fragment, impairing cell function and leading to heart ...

Bullying and violence at work increases the risk of cardiovascular disease

November 19, 2018
People who are bullied at work or experience violence at work are at higher risk of heart and brain blood vessel problems, including heart attacks and stroke, according to the largest prospective study to investigate the ...

Genetic analysis links obesity with diabetes, coronary artery disease

November 16, 2018
A Cleveland Clinic genetic analysis has found that obesity itself, not just the adverse health effects associated with it, significantly increases the risk of Type 2 diabetes and coronary artery disease. The paper was published ...

Non-coding genetic variant could improve key vascular functions

November 15, 2018
Atherosclerotic disease, the slow and silent hardening and narrowing of the arteries, is a leading cause of mortality worldwide. It is responsible for more than 15 million deaths each year, including an estimated 610,000 ...

Study of two tribes sheds light on role of Western-influenced diet in blood pressure

November 14, 2018
A South American tribe living in near-total isolation with no Western dietary influences showed no increase in average blood pressure from age one to age 60, according to a study led by researchers at Johns Hopkins Bloomberg ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.