Link found between MicroRNA and neurological aging in fruit flies

February 16, 2012 by Bob Yirka report
Drosophila mir-34 expression is upregulated with age. Image: Nature (2012) doi:10.1038/nature10810

(Medical Xpress) -- Researchers from several institutions in the Philadelphia area have banded together to form a team to look into the possible impact a certain type of MicroRNA (miRNA) may have on the neurological aging process in fruit flies. They have, as they report in their paper published in Nature, found that when the miRNA, miR-34 is more active, neuron degradation due to aging is less pronounced than when it is less so or absent.

miRNA are with a small number of nucleotides. Their role is generally to regulate transcripts by binding to them.

The research by the Philadelphia team began when they found that mutations in some miRNAs tended to lead to premature neurological again and eventual deterioration, which led them to believe that some miRNAs appeared to play a role in the aging process, at least as it applied to neurons in the brain.

To find out which miRNA in particular might be playing a role in aging, the team dissected two to three hundred fruit flies that were either thirty or sixty days old. They then winnowed down the possibilities through a variety of tests and found that just one of them, miR-34, appeared to be the one responsible for the age degradation differences in the fruit flies. Specifically they found that when miR-34 was amped up, it led to a reduced expression of Eip74EF, a transcriptor believed to be involved in the degeneration of . When it was muted or absent, the opposite occurred and those fruit flies tended to experience faster brain cell degeneration as a result.

The authors conclude that their research indicates that certain miRNA molecules appear to play a role in slowing the aging process in the brains of by inhibiting that may have a negative impact on neuron cells in older adults and that miR-34 appears to be one of them.

The research team did not of course attempt to replicate their efforts with humans, but suggest that because of some similarities between some components in brain structure between the two, it seems plausible that the same results might be found should another team take up the challenge.

Explore further: Team isolates nerve cells involved in storing long term memory and gene proteins associated with them

More information: The microRNA miR-34 modulates ageing and neurodegeneration in Drosophila, Nature (2012) doi:10.1038/nature10810

Abstract
Human neurodegenerative diseases have the temporal hallmark of afflicting the elderly population. Ageing is one of the most prominent factors to influence disease onset and progression1, yet little is known about the molecular pathways that connect these processes. To understand this connection it is necessary to identify the pathways that functionally integrate ageing, chronic maintenance of the brain and modulation of neurodegenerative disease. MicroRNAs (miRNA) are emerging as critical factors in gene regulation during development; however, their role in adult-onset, age-associated processes is only beginning to be revealed. Here we report that the conserved miRNA miR-34 regulates age-associated events and long-term brain integrity in Drosophila, providing a molecular link between ageing and neurodegeneration. Fly mir-34 expression exhibits adult-onset, brain-enriched and age-modulated characteristics. Whereas mir-34 loss triggers a gene profile of accelerated brain ageing, late-onset brain degeneration and a catastrophic decline in survival, mir-34 upregulation extends median lifespan and mitigates neurodegeneration induced by human pathogenic polyglutamine disease protein. Some of the age-associated effects of miR-34 require adult-onset translational repression of Eip74EF, an essential ETS domain transcription factor involved in steroid hormone pathways. Our studies indicate that miRNA-dependent pathways may have an impact on adult-onset, age-associated events by silencing developmental genes that later have a deleterious influence on adult life cycle and disease, and highlight fly miR-34 as a key miRNA with a role in this process.

Related Stories

Team isolates nerve cells involved in storing long term memory and gene proteins associated with them

February 10, 2012
(Medical Xpress) -- A research team in Taiwan has succeeded in isolating two nerve cells in fruit fly brains that are believed to be the major players in allowing for the formation of long term memories. Furthermore, they’ve ...

Recommended for you

Engineered protein treatment found to reduce obesity in mice, rats and primates

October 19, 2017
(Medical Xpress)—A team of researchers with pharmaceutical company Amgen Inc. report that an engineered version of a protein naturally found in the body caused test mice, rats and cynomolgus monkeys to lose weight. In their ...

New procedure enables cultivation of human brain sections in the petri dish

October 19, 2017
Researchers at the University of Tübingen have become the first to keep human brain tissue alive outside the body for several weeks. The researchers, headed by Dr. Niklas Schwarz, Dr. Henner Koch and Dr. Thomas Wuttke at ...

Cancer drug found to offer promising results in treating sepsis in test mice

October 19, 2017
(Medical Xpress)—A combined team of researchers from China and the U.S. has found that a drug commonly used to treat lung cancer in humans offers a degree of protection against sepsis in test mice. In their paper published ...

Tracing cell death pathway points to drug targets for brain damage, kidney injury, asthma

October 19, 2017
University of Pittsburgh scientists are unlocking the complexities of a recently discovered cell death process that plays a key role in health and disease, and new findings link their discovery to asthma, kidney injury and ...

Study reveals key molecular link in major cell growth pathway

October 19, 2017
A team of scientists led by Whitehead Institute has uncovered a surprising molecular link that connects how cells regulate growth with how they sense and make available the nutrients required for growth. Their work, which ...

Inflammation trains the skin to heal faster

October 18, 2017
Scars may fade, but the skin remembers. New research from The Rockefeller University reveals that wounds or other harmful, inflammation-provoking experiences impart long-lasting memories to stem cells residing in the skin, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.