Scientists unlock evolutionary secret of blood vessels

February 21, 2012, The Scripps Research Institute

The ability to form closed systems of blood vessels is one of the hallmarks of vertebrate development. Without it, humans would be closer to invertebrates (think mollusks) in design, where blood simply washes through an open system to nourish internal organs. But vertebrates evolved closed circulation systems designed to more effectively carry blood to organs and tissues.

Precisely how that happened has remained a clouded issue. But now, a team of scientists from the California and Florida campuses of The Scripps Research Institute have shed light on the topic in a study published February 21, 2012, in the journal Nature Communications.

The process of building a closed is complicated biologically and, from an , time-consuming—involving billions of years. During this lengthy process, new domains (parts of a protein that can evolve and function independently of each other) have been added progressively to key molecules.

The scientists focused on one specific domain known as UNE-S. UNE-S is part of SerRS, a type of tRNA synthetase in species with closed circulatory systems; tRNA synthesases are enzymes that help charge tRNA with the right amino acid to correctly translate genetic information from DNA to proteins.

The scientists found that UNE-S is essential for proper development of an embryo, containing a specific sequence or "nuclear localization signal" that directs SerRS to the cell nucleus. There, it affects the expression of a key regulator of new blood vessel growth.

"I think a lot happened during this evolutionary transition to a closed system and the appearance of this domain on this specific synthetase is one of them," said Xiang-Lei Yang, a Scripps Research associate professor who led the collaborative study. "Because this synthetase plays such an essential role in vascular development, it must have had a role in the transition to a closed system."

To help elucidate the role of UNE-S, the researchers turned to zebrafish as a model organism. Shuji Kishi, an assistant professor on the Scripps Florida campus who worked on the new study, noted that zebrafish have emerged over the past decade as a powerful system to study both aging and development. "Zebrafish offer a number of advantages for study because embryonic development is external to the mother and the embryos are transparent, making them an ideal model for developmental biology," he said.

To find clues to SerRS function, the team examined SerRS mutants, which are linked to abnormal blood vessel formation and defective blood circulation. In their experiments, the scientists used a variety of techniques, including crystal structure, biochemical analysis, and cell biology experiments.

Interestingly, the findings show that SerRS mutants often delete the nuclear signal or keep it hidden in an alternative conformation—like locking someone in a closet under an assumed name—rendering it ineffective. "We were astonished by what we found," said Yang. "Sequestering is a very interesting property."

The scientists were able to design a second mutation to release the sequestered nuclear signal and to restored normal blood vessel development.

In addition to suggesting that acquisition of UNE-S has a role in the establishment of the closed circulatory systems of , these results are the first to show an essential role for a tRNA synthetase-associated appended domain for an organism.

Explore further: Scientists create new genetic model of premature aging diseases

More information: The first authors of the study, "Unique Domain Appended to Vertebrate Trna Synthetase is Essential For Vascular Development," are Xiaoling Xu and Yi Shi of Scripps Research. Other authors include Hui-Min Zhang of Florida State University, Eric C. Swindell of The University of Texas Medical School at Houston, Alan G. Marshall of Florida State University, and Min Guo of Scripps Research.

Related Stories

Scientists create new genetic model of premature aging diseases

April 29, 2011
Working with a group of national and international researchers, scientists from the Florida campus of The Scripps Research Institute have developed a new genetic model of premature aging disorders that could shed light on ...

Cell molecule identified as central player in the formation of new blood vessels

November 28, 2011
Scientists at the University of North Carolina at Chapel Hill School of Medicine have identified a cellular protein that plays a central role in the formation of new blood vessels. The molecule is the protein Shc (pronounced ...

Recommended for you

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.