New hope for treating Alzheimer's Disease: A role for the FKBP52 protein

March 20, 2012

New research in humans published today reveals that the so-called FKBP52 protein may prevent the Tau protein from turning pathogenic. This may prove significant for the development of new Alzheimer's drugs and for detecting the disease before the onset of clinical symptoms.

A study published online today in the Journal of Alzheimer's Disease, for the first time demonstrates that the FKBP52 protein, discovered by Prof. Etienne BAULIEU twenty years ago, may prevent hyperphosphorylation of Tau protein, which has been shown to characterise a number of cerebral , including Alzheimer's Disease (AD).

This work has been carried out by Professor Etienne Baulieu and his research team at (National Institute for medical research in France) with the support of philanthropists who help the Institut Baulieu, based in France.

Limited research exists on Tau and its role in the development of AD, but it is known that many neurodegenerative diseases are characterised by the of pathological hyperphosphorylated forms of Tau protein, into structures known as 'Tau tangles'. The mechanism of Tau toxicity is unclear and there are currently no drug treatments targeting Tau, nor any that predict the risk of a future "Tauopathy". Professor Baulieu decided to focus on Tau abnormalities and was the first to discover in 2010, an interaction between Tau, and the FKBP52 protein.

The new research takes his previous research to the next level. It demonstrates a direct correlation between high levels of hyperphosphorylated and reduced levels of FKBP52, in brain cells from patients who have died following Alzheimer's Disease, compared with normal brain cells. This suggests that FKBP52 could control the aberrant production of pathogenic Tau. When FKBP52 is reduced in the of AD patients, pathogenic Tau is free to accumulate and contribute to the degeneration of .

In conclusion, early measurement of FKBP52 levels could form the basis of a predictive test for Alzheimer's Disease before the onset of clinical symptoms, and new compounds modulating FKBP52's activity could become the next generation of treatments for the disease.

Commenting on this new research, Professor Baulieu said: "There is still a worrying lack of research into the causes of age-related brain disorders such as Alzheimer's Disease and dementia. I founded the Institut Baulieu, with the aim of being able to treat and even prevent these diseases.

Research on Tau has been very limited, and until recently, I was among the few scientists focusing on Tau pathology. The discovery of the FKBP52 protein is the only 'anti-Tau' perspective so far. Its reduced production in the brains of Alzheimer's patients marks a turning point in understanding this complex disease.

I believe it takes us one step closer to developing an effective treatment and possible predictive tests for the increasing number of people who may develop Alzheimer's Disease in our ageing societies."

Explore further: Alzheimer's: French scientists focus on key target

Related Stories

Alzheimer's: French scientists focus on key target

January 24, 2012
French scientists said on Tuesday that lack of a key brain protein was linked to Alzheimer's, a finding that threw up a tempting target for drugs to fight the disease.

Alzheimer's vaccine cures memory of mice

December 9, 2011
(Medical Xpress) -- A vaccine that slows the progression of Alzheimer's disease and other types of dementia has been developed by researchers at the University of Sydney's Brain and Mind Research Institute (BMRI).

Recommended for you

PET scans for Alzheimer's could bring benefit to more patients

October 19, 2017
An imaging tool honed to spot rogue proteins in the brain could benefit some patients with suspected Alzheimer's, according to a new study.

One step closer toward a treatment for Alzheimer's disease?

October 18, 2017
Scientists at the Massachusetts General Hospital (MGH), in collaboration with colleagues at the University California, San Diego (UCSD), have characterized a new class of drugs as potential therapeutics for Alzheimer's disease ...

New mechanism detected in Alzheimer's disease

October 13, 2017
McGill University researchers have discovered a cellular mechanism that may contribute to the breakdown of communication between neurons in Alzheimer's disease.

Neuroscientists identify genetic changes in microglia in a mouse model of neurodegeneration and Alzheimer's disease

October 13, 2017
Microglia, immune cells that act as the central nervous system's damage sensors, have recently been implicated in Alzheimer's disease.

Green tea extract delivers molecular punch to disrupt formation of neurotoxic species

October 11, 2017
Green tea is widely considered to be beneficial for the brain. The antioxidant and detoxifying properties of green tea extracts help fight catastrophic diseases such as Alzheimer's. However, scientists have never fully understood ...

Menopause triggers metabolic changes in brain that may promote Alzheimer's

October 10, 2017
Menopause causes metabolic changes in the brain that may increase the risk of Alzheimer's disease, a team from Weill Cornell Medicine and the University of Arizona Health Sciences has shown in new research.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.