Antibodies are not required for immunity against some viruses

March 1, 2012

A new study turns the well established theory that antibodies are required for antiviral immunity upside down and reveals that an unexpected partnership between the specific and non-specific divisions of the immune system is critical for fighting some types of viral infections. The research, published online on March 1st in the journal Immunity by Cell Press, may lead to a new understanding of the best way to help protect those exposed to potentially lethal viruses, such as the rabies virus.

The immune system has two main branches, innate immunity and adaptive immunity. Innate immunity is a first line of defense that relies on cells and mechanisms that provide non-specific immunity. The more sophisticated adaptive immunity, which counts antibody-producing B cells as part of its arsenal, is thought to play a major role in the specific response to viral infections in mammals. However, adaptive immune responses require time to become fully mobilized.

"Mice infected with (VSV) can suffer fatal invasion of the even when they have a high concentration of anti-VSV antibodies in their system," explains senior study author, Dr. Ulrich H. von Andrian, from Harvard Medical School. "This observation led us to revisit the contribution of adaptive immune responses to survival following VSV infection."

The research team studied VSV infection in mice that had B cells but did not produce antibodies. Unexpectedly, although the B cells themselves were essential, survival after VSV exposure did not require antibodies or other aspects of traditional adaptive immunity."We determined that the B cells produced a chemical needed to maintain innate called macrophages. The macrophages produced type I interferons, which were required to prevent fatal VSV invasion," says co-author Dr. Matteo Iannacone.

Taken together, the results show that the essential role of B cells against VSV does not require adaptive mechanisms, but is instead directly linked with the innate immune system. "Our findings contradict the current view that antibodies are absolutely required to survive infection with viruses like VSV, and establish an unexpected function for as custodians of macrophages in antiviral immunity," concludes Dr. von Andrian. "It will be important to further dissect the role of antibodies and interferons in immunity against similar viruses that attack the nervous system, such as rabies, West Nile virus, and Encephalitis."

Explore further: A new way to stimulate the immune system and fight infection

More information: Moseman et al.: "B Cell Maintenance of Subcapsular Sinus Macrophages Protects against a Fatal Viral Infection Independent of Adaptive Immunity."

Related Stories

A new way to stimulate the immune system and fight infection

January 20, 2012

A study carried out by Eric Vivier and Sophie Ugolini at the Marseille-Luminy Centre for Immunology has just reveal a gene in mice which, when mutated, can stimulate the immune system to help fight against tumors and viral ...

Hide-and-seek: Altered HIV can't evade immune system

September 28, 2011

(Medical Xpress) -- Researchers at Johns Hopkins have modified HIV in a way that makes it no longer able to suppress the immune system. Their work, they say in a report published online September 19 in the journal Blood, ...

Recommended for you

Nature study suggests new therapy for Gaucher disease

February 22, 2017

Scientists propose in Nature blocking a molecule that drives inflammation and organ damage in Gaucher and maybe other lysosomal storage diseases as a possible treatment with fewer risks and lower costs than current therapies.

Understanding how HIV evades the immune system

February 21, 2017

Monash University (Australia) and Cardiff University (UK) researchers have come a step further in understanding how the human immunodeficiency virus (HIV) evades the immune system.

T cells support long-lived antibody-producing cells

February 21, 2017

If you've ever wondered how a vaccine given decades ago can still protect against infection, you have your plasma cells to thank. Plasma cells are long-lived B cells that reside in the bone marrow and churn out antibodies ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.