Creativity and human reasoning during decision-making

March 27, 2012, Public Library of Science
Modern human brain
Modern human brain. Credit: Univ. of Wisconsin-Madison Brain Collection.

A hallmark of human intelligence is the ability to efficiently adapt to uncertain, changing and open-ended environments. In such environments, efficient adaptive behavior often requires considering multiple alternative behavioral strategies, adjusting them, and possibly inventing new ones. These reasoning, learning and creative abilities involve the frontal lobes, which are especially well developed in humans compared to other primates. However, how the frontal function decides to create new strategies and how multiple strategies can be monitored concurrently remain largely unknown.

In a new study, published March 27 in the online, open-access journal , Anne Collins and Etienne Koechlin of Ecole Normale Supérieure and Institut National de la Santé et de la Recherche Médicale, France, examine function using behavioral experiments and computational models of human decision-making. They find that human frontal function concurrently monitors no more than three/four strategies but favors creativity, i.e. the exploration and creation of new strategies whenever no monitored strategies appear to be reliable enough.

The researchers asked one hundred participants to find "3-digit pin codes" by a method of trial and error, under a variety of conditions. They then developed a computational model that predicted the responses produced by participants, which also revealed that participants made their choices by mentally constructing and concurrently monitoring up to three distinct behavioral strategies; flexibly associating digits, motor responses and expected auditory feedbacks.

"This is a remarkable result, because the actual number of correct codes varied across sessions. This suggests that this capacity limit is a hard constraint of human higher cognition," said Dr. Koechlin. Consistently, the performance was significantly better in sessions including no more than three repeated codes.

Furthermore, the researchers found that the pattern of participants' responses derived from a decision system that strongly favors the exploration of new behavioral strategies: "The results provide evidence that the human executive system favors creativity for compensating its limited monitoring capacity" explained Dr. Koechlin. "It favors the exploration of new strategies but restrains the monitoring and storage of uncompetitive ones. Interestingly, this ability to regulate creativity varied across participants and critically explains individual variations in performances. We believe our study may also help to understand the biological foundations of individual differences in decision-making and ".

More information: Collins A, Koechlin E (2012) Reasoning, Learning, and Creativity: Frontal Lobe Function and Human Decision-Making. PLoS Biol 10(3): e1001293.doi:10.1371/journal.pbio.1001293

Related Stories

Recommended for you

Pain relief at a lower opioid dose

June 25, 2018
A team of researchers at Johns Hopkins have found that activating nerve cell receptors along two chemical pathways—one that has previously been linked to how the brain senses "itch"—may improve pain relief when combined ...

Researchers identify brain cells responsible for removing damaged neurons after injury

June 25, 2018
Researchers at the University of Virginia School of Medicine have discovered that microglia, specialized immune cells in the brain, play a key role in clearing dead material after brain injury. The study, which will be published ...

New technique helps uncover changes in ALS neurons

June 22, 2018
Northwestern Medicine scientists have discovered that some neurons affected by amyotrophic lateral sclerosis (ALS) display hypo-excitability, using a new method to measure electrical activity in cells, according to a study ...

Broken shuttle may interfere with learning in major brain disorders

June 22, 2018
Unable to carry signals based on sights and sounds to the genes that record memories, a broken shuttle protein may hinder learning in patients with intellectual disability, schizophrenia, and autism.

Watching stem cells repair spinal cord in real time

June 22, 2018
Monash University researchers have restored movement and regenerated nerves using stem cells in zebra fish where the spinal cord is severely damaged.

Scientists discover fundamental rule of brain plasticity

June 21, 2018
Our brains are famously flexible, or "plastic," because neurons can do new things by forging new or stronger connections with other neurons. But if some connections strengthen, neuroscientists have reasoned, neurons must ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.