Creativity and human reasoning during decision-making

March 27, 2012
Modern human brain
Modern human brain. Credit: Univ. of Wisconsin-Madison Brain Collection.

A hallmark of human intelligence is the ability to efficiently adapt to uncertain, changing and open-ended environments. In such environments, efficient adaptive behavior often requires considering multiple alternative behavioral strategies, adjusting them, and possibly inventing new ones. These reasoning, learning and creative abilities involve the frontal lobes, which are especially well developed in humans compared to other primates. However, how the frontal function decides to create new strategies and how multiple strategies can be monitored concurrently remain largely unknown.

In a new study, published March 27 in the online, open-access journal , Anne Collins and Etienne Koechlin of Ecole Normale Supérieure and Institut National de la Santé et de la Recherche Médicale, France, examine function using behavioral experiments and computational models of human decision-making. They find that human frontal function concurrently monitors no more than three/four strategies but favors creativity, i.e. the exploration and creation of new strategies whenever no monitored strategies appear to be reliable enough.

The researchers asked one hundred participants to find "3-digit pin codes" by a method of trial and error, under a variety of conditions. They then developed a computational model that predicted the responses produced by participants, which also revealed that participants made their choices by mentally constructing and concurrently monitoring up to three distinct behavioral strategies; flexibly associating digits, motor responses and expected auditory feedbacks.

"This is a remarkable result, because the actual number of correct codes varied across sessions. This suggests that this capacity limit is a hard constraint of human higher cognition," said Dr. Koechlin. Consistently, the performance was significantly better in sessions including no more than three repeated codes.

Furthermore, the researchers found that the pattern of participants' responses derived from a decision system that strongly favors the exploration of new behavioral strategies: "The results provide evidence that the human executive system favors creativity for compensating its limited monitoring capacity" explained Dr. Koechlin. "It favors the exploration of new strategies but restrains the monitoring and storage of uncompetitive ones. Interestingly, this ability to regulate creativity varied across participants and critically explains individual variations in performances. We believe our study may also help to understand the biological foundations of individual differences in decision-making and ".

More information: Collins A, Koechlin E (2012) Reasoning, Learning, and Creativity: Frontal Lobe Function and Human Decision-Making. PLoS Biol 10(3): e1001293.doi:10.1371/journal.pbio.1001293

Related Stories

Recommended for you

Gene mutation causes low sensitivity to pain

December 13, 2017
A UCL-led research team has identified a rare mutation that causes one family to have unusually low sensitivity to pain.

Activating MSc glutamatergic neurons found to cause mice to eat less

December 13, 2017
(Medical Xpress)—A trio of researchers working at the State University of New York has found that artificially stimulating neurons that exist in the medial septal complex in mouse brains caused test mice to eat less. In ...

Scientists discover blood sample detection method for multiple sclerosis

December 13, 2017
A method for quickly detecting signs of multiple sclerosis has been developed by a University of Huddersfield research team.

LLNL-developed microelectrodes enable automated sorting of neural signals

December 13, 2017
Thin-film microelectrode arrays produced at Lawrence Livermore National Laboratory (LLNL) have enabled development of an automated system to sort brain activity by individual neurons, a technology that could open the door ...

Intermittent fasting found to increase cognitive functions in mice

December 12, 2017
(Medical Xpress)—The Daily Mail spoke with the leader of a team of researchers with the National Institute on Aging in the U.S. and reports that they have found that putting mice on a diet consisting of eating nothing every ...

Discovery deepens understanding of brain's sensory circuitry

December 12, 2017
Because they provide an exemplary physiological model of how the mammalian brain receives sensory information, neural structures called "mouse whisker barrels" have been the subject of study by neuroscientists around the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.