Culprit behind unchecked angiogenesis identified

March 29, 2012
This image shows growing blood vessels in the retina of a mouse. Vessels grow from the center to the outer parts of un-supplied tissue. Credit: MPI for Molecular Biomedicine.

German researchers unravel a critical regulatory mechanism controlling blood vessel growth that might help solve drug resistance problems in the future.

Angiogenesis, the growth of new blood vessels, is a complex process during which different signalling proteins interact with each other in a highly coordinated fashion. The growth factor VEGF and the Notch signalling pathway both play important roles in this process. VEGF promotes vessel growth by binding to its receptor, VEGFR2, while the Notch signalling pathway acts like a switch capable of suppressing angiogenesis. Until recently, scientists had assumed that Notch cancels the effects of VEGF through the downregulation of VEGFR2. Now, researchers at the Institute for Molecular and the Westphalian Wilhelms-University in Münster, Germany, were able to demonstrate that defective Notch signalling enables strong and deregulated vessel growth even when VEGF or VEGFR2 are inhibited. In this case, a different VEGF family receptor, VEGFR3, is strongly upregulated, promoting angiogenesis. "This finding might help explain issues in certain types of cancer therapy and could become the basis for novel treatment strategies," suggests Ralf Adams, MPI's Executive Director and Chair of the Department of Tissue Biology and Morphogenesis.

An extensively branched network of blood vessels provides every organ of the body with nutrients and removes harmful metabolic waste products from tissues. Growth of this vascular system is essential for development and wound healing processes. Uncontrolled angiogenesis contributes to diseases like hemangiomas, the sponge-like overgrowth of blood vessels in the skin, or retinopathies impairing the eyesight of diabetic and elderly individuals. In cancer therapy, inhibition of angiogenesis is used to starve tumours and prevent the metastatic spread of cancer cells via the circulation. At present, this is most frequently done by targeting VEGF or its receptor VEGFR2. When their oxygen supply becomes inadequate, tissues begin to release VEGF, which binds to VEGFR2, activating the receptor and thereby triggering vessel growth. Thus, the formation of new blood vessels can be blocked by inhibiting VEGF or VEGFR2. Unfortunately, existing treatments are inadequate and, for reasons that are not yet known, some patients respond poorly or not at all to VEGF/VEGFR2 inhibition.

Now, Rui Benedito, a postdoctoral research fellow in Adams' Department, has demonstrated that inhibition of the Notch pathway in blood vessels of the mouse eye permits strong and deregulated vessel growth even when VEGF or VEGFR2 are inhibited. "It turns out that another VEGF family receptor, VEGFR3, takes over, promoting the formation of new blood vessels," explains Benedito. VEGFR3 is strongly upregulated in in the absence of Notch and is active even without growth signals from the surrounding tissues.

"What we need to do now is confirm whether VEGFR3 and other Notch-regulated signals are in fact capable of promoting VEGF-independent in eye disease or cancer not only in mice but also in humans," explains Adams. "It might become possible to predict whether patients, depending on their vascular Notch activation status, are going to respond to VEGF or VEGFR2 inhibition. This would allow physicians to choose alternative therapies if necessary. Here, too, collaboration between MPI, the medical faculty, and the University of Münster is essential: "Our work is strongly benefitting from the excellent support provided by the University."

Explore further: A culprit behind brain tumor resistance to therapy

More information: Rui Benedito, Susana F. Rocha, Marina Woeste, Martin Zamykal, Freddy Radtke, Oriol Casanovas, Antonio Duarte, Bronislaw Pytowski & Ralf H. Adams Notch-dependent VEGFR3 upregulation allows angiogenesis without VEGF–VEGFR2 signalling. Nature, DOI: 10.1038/nature10908

Related Stories

A culprit behind brain tumor resistance to therapy

March 5, 2012
Persistent protein expression may explain why tumors return after therapy in glioblastoma patients, according to a study published on March 5th in the Journal of Experimental Medicine.

High VEGF signaling score tied to lung cancer prognosis

February 22, 2012
(HealthDay) -- A high vascular endothelial growth factor (VEGF) signaling score correlates with good prognosis in patients with early squamous cell carcinoma (SCC) of the lung, according to a study published online Feb. 21 ...

Scientists identify a key molecule that blocks abnormal blood vessel growth in tumors

September 21, 2011
A new and better understanding of blood vessel growth and vascular development (angiogenesis) in cancer has been made possible by research carried out by a team of scientists from Moffitt Cancer Center, the University of ...

New molecular pathway regulating angiogenesis may fight retinal disease, cancers

May 29, 2011
Scientists identify in the journal Nature a new molecular pathway used to suppress blood vessel branching in the developing retina – a finding with potential therapeutic value for fighting diseases of the retina and ...

Recommended for you

Researchers describe mechanism that underlies age-associated bone loss

September 22, 2017
A major health problem in older people is age-associated osteoporosis—the thinning of bone and the loss of bone density that increases the risk of fractures. Often this is accompanied by an increase in fat cells in the ...

Researchers develop treatment to reduce rate of cleft palate relapse complication

September 22, 2017
Young people with cleft palate may one day face fewer painful surgeries and spend less time undergoing uncomfortable orthodontic treatments thanks to a new therapy developed by researchers from the UCLA School of Dentistry. ...

Exosomes are the missing link to insulin resistance in diabetes

September 21, 2017
Chronic tissue inflammation resulting from obesity is an underlying cause of insulin resistance and type 2 diabetes. But the mechanism by which this occurs has remained cloaked, until now.

Thousands of new microbial communities identified in human body

September 20, 2017
A new study of the human microbiome—the trillions of microbial organisms that live on and within our bodies—has analyzed thousands of new measurements of microbial communities from the gut, skin, mouth, and vaginal microbiome, ...

Study finds immune system is critical to regeneration

September 20, 2017
The answer to regenerative medicine's most compelling question—why some organisms can regenerate major body parts such as hearts and limbs while others, such as humans, cannot—may lie with the body's innate immune system, ...

Immune cells produce wound healing factor, could lead to new IBD treatment

September 20, 2017
Specific immune cells have the ability to produce a healing factor that can promote wound repair in the intestine, a finding that could lead to new, potential therapeutic treatments for inflammatory bowel disease (IBD), according ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.