Solving mystery of how sulfa drugs kill bacteria yields 21st century drug development target

March 1, 2012

More than 70 years after the first sulfa drugs helped to revolutionize medical care and save millions of lives, St. Jude Children's Research Hospital scientists have determined at an atomic level the mechanism these medications use to kill bacteria. The discovery provides the basis for a new generation of antibiotics that would likely be harder for bacteria to resist and cause fewer side effects.

The work focused on sulfa drugs and their target enzyme, dihydropteroate synthase (DHPS). Most disease-causing microorganisms need DHPS to help make the molecule folate, which is required for the production of DNA and some . Working with enzymes from gram-negative and gram-positive bacteria, researchers used a variety of techniques to determine for the first time the key intermediate structure DHPS forms during the chemical reaction to advance folate production. The structure also explains at a molecular level how sulfa drugs function and how resistance causing mutations help bacteria withstand them.

The findings mark a major advance in both microbial biochemistry and anti-microbial drug discovery. The study is published in the March 2 issue of the journal Science.

"The structure we found was totally unexpected and really opens the door for us and others to design a new class of inhibitors targeting DHPS that will help us avoid side effects and other problems associated with sulfa drugs," said Stephen White, Ph.D., chair of the St. Jude Department of and the paper's corresponding author.

Co-author Richard Lee, Ph.D., a member of the St. Jude Department of and Therapeutics, added: "Now we want to leverage this information to develop drugs against the opportunistic infections that threaten so many St. Jude patients."

Sulfa drugs were discovered in the 1930s and became the first antibiotic in widespread use. Although the drugs were early victims of , they are still widely used against and to prevent infections in patients with weakened immune systems, including St. Jude patients undergoing cancer chemotherapy. The growing problem of antibiotic resistance has prompted renewed interest in sulfa drugs as a possible source of new therapeutic targets, Lee said.

Previous work had shown that sulfa drugs target DHPS and work by mimicking a molecule called pABA. DHPS advances production by accelerating the fusion of pABA and another molecule called dihydropteridine pyrophosphate (DHPP). Until now, however, scientists did not know exactly how the DHPS reaction occurred or how sulfa drugs disrupted the process.

Working on enzymes from gram-positive Bacillus anthracis and gram-negative Yersinia pestis, the bacteria that cause anthrax and plague, researchers first used computational methods to predict the enzyme's activity. Next they used a technique called X-ray crystallography to capture the unfolding chemical reaction and confirm the prediction. X-ray crystallography involves bombarding proteins trapped in crystals with X-rays to determine the protein structure.

Researchers showed that DHPP binds to a specific pocket in DHPS. Aided by magnesium, the binding promotes the break-up of DHPP and release of pyrophosphate. Two long flexible loops then create an intermediate structure that sets the stage for pABA to enter and bind in a second short-lived pocket, allowing pABA to fuse with the cleaved DHPP. Investigators captured all four actors in the drama in a single crystal structure, including the intermediate cleaved DHPP molecule whose existence was previously unknown.

The results showed that the mechanism involves a chemical reaction known as an Sn1 reaction rather than the anticipated Sn2 reaction. "This is a key finding for because it reveals chemical features of the DHPS enzyme's active site that we can exploit in developing new drugs," said study co-author Donald Bashford, Ph.D., an associate member of the St. Jude Department of Structural Biology.

The study also provided insights into sulfa drug resistance. Investigators showed that the binding sites of pABA and the sulfa drugs overlap, but that sulfa drugs extend beyond the pocket in which pABA binds. Mutations associated with drug resistance cluster around this extended region of the pABA pocket, which explains how mutations can prevent the drugs from binding without seriously affecting the binding of pABA. The work also highlights the transitory structure made by the two DHPS loops as a target for a new class of drugs that would be difficult for bacteria to develop resistance against.

"When we set out on this project eight years ago, a goal was to truly understand the catalytic mechanism of the DHPS protein and how the inhibitors targeting it work. I am ecstatic we've succeeded," Lee said. The success grew out of an interdisciplinary effort and some luck, White said. The plague enzyme turned out to be well suited to this project. Unlike the DHPS enzymes from other bacteria, the two extended loops are free to form the short-lived structure and the pABA pocket when the enzyme is immobilized in the crystal.

More information: "Catalysis and Sulfa Drug Resistance in Dihydropteroate Synthase," by M.-K. Yun et al. Science (2012).

Related Stories

Recommended for you

How defeating THOR could bring a hammer down on cancer

December 14, 2017
It turns out Thor, the Norse god of thunder and the Marvel superhero, has special powers when it comes to cancer too.

Researchers track muscle stem cell dynamics in response to injury and aging

December 14, 2017
A new study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) describes the biology behind why muscle stem cells respond differently to aging or injury. The findings, published in Cell Stem Cell, ...

'Human chronobiome' study informs timing of drug delivery, precision medicine approaches

December 13, 2017
Symptoms and efficacy of medications—and indeed, many aspects of the human body itself—vary by time of day. Physicians tell patients to take their statins at bedtime because the related liver enzymes are more active during ...

Study confirms link between the number of older brothers and increased odds of being homosexual

December 12, 2017
Groundbreaking research led by a team from Brock University has further confirmed that sexual orientation for men is likely determined in the womb.

Potassium is critical to circadian rhythms in human red blood cells

December 12, 2017
An innovative new study from the University of Surrey and Cambridge's MRC Laboratory of Molecular Biology, published in the prestigious journal Nature Communications, has uncovered the secrets of the circadian rhythms in ...

Estrogen discovery could shed new light on fertility problems

December 12, 2017
Estrogen produced in the brain is necessary for ovulation in monkeys, according to researchers at the University of Wisconsin-Madison who have upended the traditional understanding of the hormonal cascade that leads to release ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.