Nuts and Bolts: Mitochondria

March 27, 2012, Wellcome Trust
Nuts and Bolts: Mitochondria
Mitochondria (red) in the cell cytoplasm. Credit: Dr David Furness, Wellcome Images

Hailed as the ‘powerhouses’ of the cell in thousands of textbooks, mitochondria rightly have a reputation as essential pieces of cellular machinery. Find out more with this quick guide by Chrissie Giles.

While you may or may not have your mum's eyes, something you've definitely inherited from her is the DNA inside your . These membrane-bound organelles are a vital part of aerobic respiration - how our cells use oxygen to transfer the energy from food into a form the body can use. Mitochondria are also involved in other metabolic and cellular processes, including ageing, cell signalling and cell death.

Thought to be descendants of bacteria that colonised our cells over 2 billion years ago, mitochondria contain their own genome. This was the first human genome to be sequenced, by Professor Fred Sanger and colleagues in 1981.

Ten years later, a revised version was released (with just 18 corrections to the 16 569-base-pair sequence). Some of these errors reflected rare mutations in the human placenta used as the source of DNA. Impressively, Sanger (retired by that point) could recall which freezer the original samples were stored in, allowing the researchers to resequence them.

Mutations in mitochondrial DNA (mtDNA) and/or nuclear DNA (in the genes containing the information to make parts of the mitochondria) can cause mitochondrial diseases. Common symptoms include muscle weakness, neurological problems, issues with sight and/or hearing, kidney disease, diabetes and heart disease.

While around one in 200 children is born with a potentially pathogenic mutation, only around one in 6500 develops severe mitochondrial disease, which can lead to death in early infancy. In the wider population, a UK study suggests that 9.2 in 100 000 people have recognisable mitochondrial disease caused by mutated mitochondrial DNA.


Highly dynamic organelles that fuse and split constantly, forming networks of varying size and dimensions. When healthy, they continuously supply chemical energy in the form of adenosine triphosphate (ATP) to all eukaryotic (nucleus-containing) cells. Mitochondria constitute 15 to 35 per cent of a cell's total mass.

Mitochondrial DNA
The human form has 37 genes, 13 of which encode components of the cell's energy-transferring pathways. The effects of mutations in these genes are most evident in energy-hungry tissues such as the muscles, nerves and brain. Almost no recombination is thought to occur in the mitochondrial genome, but naturally occurring genetic variants are common. Evolutionary biologists can therefore use the strict maternal inheritance of mitochondrial DNA to track historical migration of populations across the world.

Outer membrane
Similar to the cell's membrane, this is a fatty layer that contains a number of proteins. These include porins, which allow smaller molecules to cross the membrane freely.

Intermembrane space
Studded with the proteins of the electron transport chain, this is the site of the final stage of aerobic respiration. Also present is ATP synthase, the complex that catalyses the production of adenosine triphosphate (ATP).

Inner membrane
In the final step of aerobic respiration, hydrogen ions (protons) cross from here to the matrix through the enzyme ATP synthase, creating adenosine triphosphate (ATP).

The folds of inner membrane that create compartments within mitochondria. Cristae increase the surface area available to house the complexes responsible for carrying out the reactions of aerobic respiration.

The innermost compartment of the mitochondrion, where several stages of aerobic respiration (including the Krebs cycle) take place. Contains enzymes, mitoribosomes and the mitochondrial DNA.

Explore further: Structure of a molecular copy machine: How mitochondrial genes are transcribed

Related Stories

Structure of a molecular copy machine: How mitochondrial genes are transcribed

September 26, 2011
Mitochondria are compartments within cells and have their own DNA. The key protein required for the expression of the genetic information in this DNA is the mitochondrial RNA polymerase enzyme. Its three-dimensional structure ...

How mitochondrial DNA defects cause inherited deafness

February 17, 2012
(Medical Xpress) -- Yale scientists have discovered the molecular pathway by which maternally inherited deafness appears to occur: Mitochondrial DNA mutations trigger a signaling cascade, resulting in programmed cell death. ...

Recommended for you

Creation of synthetic horsepox virus could lead to more effective smallpox vaccine

January 19, 2018
UAlberta researchers created a new synthetic virus that could lead to the development of a more effective vaccine against smallpox. The discovery demonstrates how techniques based on the use of synthetic DNA can be used to ...

Study ends debate over role of steroids in treating septic shock

January 19, 2018
The results from the largest ever study of septic shock could improve treatment for critically ill patients and save health systems worldwide hundreds of millions of dollars each year.

New approach could help curtail hospitalizations due to influenza infection

January 18, 2018
More than 700,000 Americans were hospitalized due to illnesses associated with the seasonal flu during the 2014-15 flu season, according to federal estimates. A radical new approach to vaccine development at UCLA may help ...

Zika virus damages placenta, which may explain malformed babies

January 18, 2018
Though the Zika virus is widely known for a recent outbreak that caused children to be born with microencephaly, or having a small head, and other malformations, scientists have struggled to explain how the virus affects ...

Certain flu virus mutations may compensate for fitness costs of other mutations

January 18, 2018
Seasonal flu viruses continually undergo mutations that help them evade the human immune system, but some of these mutations can reduce a virus's potency. According to new research published in PLOS Pathogens, certain mutations ...

Study reveals how MRSA infection compromises lymphatic function

January 17, 2018
Infections of the skin or other soft tissues with the hard-to-treat MRSA (methicillin-resistant Staphylococcus aureus) bacteria appear to permanently compromise the lymphatic system, which is crucial to immune system function. ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.