Nuts and Bolts: Mitochondria

March 27, 2012
Nuts and Bolts: Mitochondria
Mitochondria (red) in the cell cytoplasm. Credit: Dr David Furness, Wellcome Images

Hailed as the ‘powerhouses’ of the cell in thousands of textbooks, mitochondria rightly have a reputation as essential pieces of cellular machinery. Find out more with this quick guide by Chrissie Giles.

While you may or may not have your mum's eyes, something you've definitely inherited from her is the DNA inside your . These membrane-bound organelles are a vital part of aerobic respiration - how our cells use oxygen to transfer the energy from food into a form the body can use. Mitochondria are also involved in other metabolic and cellular processes, including ageing, cell signalling and cell death.

Thought to be descendants of bacteria that colonised our cells over 2 billion years ago, mitochondria contain their own genome. This was the first human genome to be sequenced, by Professor Fred Sanger and colleagues in 1981.

Ten years later, a revised version was released (with just 18 corrections to the 16 569-base-pair sequence). Some of these errors reflected rare mutations in the human placenta used as the source of DNA. Impressively, Sanger (retired by that point) could recall which freezer the original samples were stored in, allowing the researchers to resequence them.

Mutations in mitochondrial DNA (mtDNA) and/or nuclear DNA (in the genes containing the information to make parts of the mitochondria) can cause mitochondrial diseases. Common symptoms include muscle weakness, neurological problems, issues with sight and/or hearing, kidney disease, diabetes and heart disease.

While around one in 200 children is born with a potentially pathogenic mutation, only around one in 6500 develops severe mitochondrial disease, which can lead to death in early infancy. In the wider population, a UK study suggests that 9.2 in 100 000 people have recognisable mitochondrial disease caused by mutated mitochondrial DNA.


Highly dynamic organelles that fuse and split constantly, forming networks of varying size and dimensions. When healthy, they continuously supply chemical energy in the form of adenosine triphosphate (ATP) to all eukaryotic (nucleus-containing) cells. Mitochondria constitute 15 to 35 per cent of a cell's total mass.

Mitochondrial DNA
The human form has 37 genes, 13 of which encode components of the cell's energy-transferring pathways. The effects of mutations in these genes are most evident in energy-hungry tissues such as the muscles, nerves and brain. Almost no recombination is thought to occur in the mitochondrial genome, but naturally occurring genetic variants are common. Evolutionary biologists can therefore use the strict maternal inheritance of mitochondrial DNA to track historical migration of populations across the world.

Outer membrane
Similar to the cell's membrane, this is a fatty layer that contains a number of proteins. These include porins, which allow smaller molecules to cross the membrane freely.

Intermembrane space
Studded with the proteins of the electron transport chain, this is the site of the final stage of aerobic respiration. Also present is ATP synthase, the complex that catalyses the production of adenosine triphosphate (ATP).

Inner membrane
In the final step of aerobic respiration, hydrogen ions (protons) cross from here to the matrix through the enzyme ATP synthase, creating adenosine triphosphate (ATP).

The folds of inner membrane that create compartments within mitochondria. Cristae increase the surface area available to house the complexes responsible for carrying out the reactions of aerobic respiration.

The innermost compartment of the mitochondrion, where several stages of aerobic respiration (including the Krebs cycle) take place. Contains enzymes, mitoribosomes and the mitochondrial DNA.

Explore further: Structure of a molecular copy machine: How mitochondrial genes are transcribed

Related Stories

Structure of a molecular copy machine: How mitochondrial genes are transcribed

September 26, 2011
Mitochondria are compartments within cells and have their own DNA. The key protein required for the expression of the genetic information in this DNA is the mitochondrial RNA polymerase enzyme. Its three-dimensional structure ...

How mitochondrial DNA defects cause inherited deafness

February 17, 2012
(Medical Xpress) -- Yale scientists have discovered the molecular pathway by which maternally inherited deafness appears to occur: Mitochondrial DNA mutations trigger a signaling cascade, resulting in programmed cell death. ...

Recommended for you

Google searches can be used to track dengue in underdeveloped countries

July 20, 2017
An analytical tool that combines Google search data with government-provided clinical data can quickly and accurately track dengue fever in less-developed countries, according to new research published in PLOS Computational ...

MRSA emerged years before methicillin was even discovered

July 19, 2017
Methicillin resistant Staphylococcus aureus (MRSA) emerged long before the introduction of the antibiotic methicillin into clinical practice, according to a study published in the open access journal Genome Biology. It was ...

New test distinguishes Zika from similar viral infections

July 18, 2017
A new test is the best-to-date in differentiating Zika virus infections from infections caused by similar viruses. The antibody-based assay, developed by researchers at UC Berkeley and Humabs BioMed, a private biotechnology ...

'Superbugs' study reveals complex picture of E. coli bloodstream infections

July 18, 2017
The first large-scale genetic study of Escherichia coli (E. coli) cultured from patients with bloodstream infections in England showed that drug resistant 'superbugs' are not always out-competing other strains. Research by ...

Ebola virus can persist in monkeys that survived disease, even after symptoms disappear

July 17, 2017
Ebola virus infection can be detected in rhesus monkeys that survive the disease and no longer show symptoms, according to research published by Army scientists in today's online edition of the journal Nature Microbiology. ...

Mountain gorillas have herpes virus similar to that found in humans

July 13, 2017
Scientists from the University of California, Davis, have detected a herpes virus in wild mountain gorillas that is very similar to the Epstein-Barr virus in humans, according to a study published today in the journal Scientific ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.