'Personalized immune' mouse offers new tool for studying autoimmune diseases

March 14, 2012

Columbia University Medical Center (CUMC) scientists have developed a way to recreate an individual's immune system in a mouse. The "personalized immune mouse" offers researchers an unprecedented tool for individualized analysis of abnormalities that contribute to type 1 diabetes and other autoimmune diseases, starting at the onset of disease. The findings were published today in the online edition of Science Translational Medicine.

The could also have clinical applications, such as predicting how a particular patient might respond to existing drugs or immunotherapies, reports senior author Megan Sykes, Michael J. Friedlander Professor of Medicine and Professor of & Immunology and Surgical Sciences (in Surgery) at CUMC. Dr. Sykes is also Director for the Columbia Center for Translational Immunology. In addition, the model might prove useful for developing individualized immunotherapies for fighting infection or cancer or for lessening a patient's rejection of transplanted tissue.

Researchers have been searching for new ways to tease apart the various factors that contribute to autoimmune disease. "While large-scale studies of human populations have provided important clues to the genetic basis of immune diseases, they have offered little information about the specific role the genes play," says Dr. Sykes. "It's difficult to isolate these mechanisms when looking at groups of patients who have had disease for different lengths of time or have been receiving different treatments. And the fact that they already have the disease makes it difficult to distinguish what underlies and propagates the autoimmune process."

Several research groups have attempted to create a personalized immune mouse. However, each model has had significant limitations, such as an inability to generate the full complement of and incompatibilities between tissues used to recreate the human , leading to graft-versus-host disease.

Dr. Sykes' model, in contrast, is able to recreate a robust and diverse human immune system, including T cells, B cells, and myeloid cells (which generate a variety of immune cells), free of immune incompatibilities.

The model is made by transplanting human bone marrow stem cells (also known as CD34+ cells), along with a small amount (approximately 1 cubic mm) of HLA-matched immature thymus tissue, into an immunodeficient mouse. (The HLA, or human leukocyte antigen, system mediates interactions among various immune cells.) The thymus tissue is implanted into the mouse's kidney capsule, a thin membrane that envelops the kidney and serves as an incubator. Within six to eight weeks, the transplanted thymus tissue is seeded by circulating human CD34+ cells (which are infused into the mouse's bloodstream), and begins generating human immune cells from the CD34+ cells.

A key to the model's success was the team's discovery that freezing and thawing the transplanted thymus tissue, as well as administering antibodies against CD2 (a glycoprotein that mediates T cell development and activation), depletes mature T cells from the tissue graft. This prevents rejection of the human CD34+ and graft-versus-host disease, while preserving function of the thymus tissue.

Dr. Sykes intends to use the personalized immune mouse to study type 1 diabetes. "We hope to find out what is fundamentally different about patients' immune systems, compared with those of healthy individuals, before any disease develops," she says.

The studies should also reveal more about the genetics of type 1 diabetes. "A number of HLA-associated genes have been linked to type 1 ," she explains. "About a third of the population has one of more of these genes. But a much smaller percentage of the population actually develops the disease. What this means is, the HLA genes are necessary, but not sufficient, to cause . Using the personalized immune mouse, we expect to learn more about the role that non-HLA genes play in the disease."

Explore further: Tonsils make T cells, too, study shows

More information: Dr. Sykes' paper is entitled, "A model for personalized in vivo analysis of human immune responsiveness."

Related Stories

Tonsils make T cells, too, study shows

March 5, 2012
A new study provides evidence that a critical type of immune cell can develop in human tonsils. The cells, called T lymphocytes, or T cells, have been thought to develop only in the thymus, an organ of the immune system that ...

Connexins: Providing protection to cells destroyed in Type 1 diabetes

November 7, 2011
Type 1 diabetes is a lifelong disease characterized by high levels of sugar (glucose) in the blood. It is caused by the patient's immune system attacking and destroying the cells in their pancreas that produce the hormone ...

Recommended for you

Australian researchers in peanut allergy breakthrough

August 17, 2017
Australian researchers have reported a major breakthrough in the relief of deadly peanut allergy with the discovery of a long-lasting treatment they say offers hope that a cure will soon be possible.

Genetic variants found to play key role in human immune system

August 16, 2017
It is widely recognized that people respond differently to infections. This can partially be explained by genetics, shows a new study published today in Nature Communications by an international collaboration of researchers ...

Study identifies a new way to prevent a deadly fungal infection spreading to the brain

August 16, 2017
Research led by the University of Birmingham has discovered a way to stop a deadly fungus from 'hijacking' the body's immune system and spreading to the brain.

Biophysics explains how immune cells kill bacteria

August 16, 2017
(Tokyo, August 16) A new data analysis technique, moving subtrajectory analysis, designed by researchers at Tokyo Institute of Technology, defines the dynamics and kinetics of key molecules in the immune response to an infection. ...

How a nutrient, glutamine, can control gene programs in cells

August 15, 2017
The 200 different types of cells in the body all start with the same DNA genome. To differentiate into families of bone cells, muscle cells, blood cells, neurons and the rest, differing gene programs have to be turned on ...

Scientists identify gene that controls immune response to chronic viral infections

August 15, 2017
For nearly 20 years, Tatyana Golovkina, PhD, a microbiologist, geneticist and immunologist at the University of Chicago, has been working on a particularly thorny problem: Why are some people and animals able to fend off ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.