How red blood cells get so big -- and the bad things that happen when they don't

March 1, 2012, Yale University

Yale researchers have discovered how megakaryocytes — giant blood cells that produce wound-healing platelets — manage to grow 10 to 15 times larger than other blood cells.

The findings, to be published March 13 in the journal Developmental Cell, also hint at how a malfunction in this process may cause a form of leukemia.

"A failure of these cells to grow might be an initial trigger for megakaryoblastic leukemias," said Diane Krause, senior author of the paper, who is a researcher for the Yale Cancer Center; professor of laboratory medicine, cell biology, and pathology; and associate director of the Yale Stem Cell Center.

Megakaryocytes grow so large because the DNA within the cell duplicates many times — but without the cell undergoing cell division: a process called endomitosis. A megakaryoblastic can shelter more than 120 sets of nuclear DNA before it eventually becomes the biological equivalent of a supernova, undergoing profound changes to break apart into thousands of platelets needed for normal blood clotting.

The Yale team led by postdoctoral associate Yuan Gao found that two proteins called guanine exchange factors (GEF-H1) put the brakes on endomitosis. They found that without GEF-H1, nuclear DNA couldn't go from two internal nuclei to four. Additional divisions of nuclear DNA within the cell could not take place unless there was decreased expression of a second factor, ECT2.

The researchers were intrigued by the results because a gene implicated in malignant leukemias, MKL1, also seems to be necessary to promote normal megakaryocyte maturation. The Krause lab is now studying whether mutant forms of MKL1 may keep levels of GEF-H1 high, thereby making it impossible for megakaryocytes to undergo endomitosis and setting the stage for development of cancer.

"These findings reveal another important step toward the formation of functional platelets, which are necessary for normal blood clotting," Krause said. "But they also provide a clue regarding what may go awry to transform normal megakaryocytes into malignant leukemia cells."

Explore further: Surprise finding redraws 'map' of blood cell production

Related Stories

Surprise finding redraws 'map' of blood cell production

January 31, 2012
A study of the cells that respond to crises in the blood system has yielded a few surprises, redrawing the 'map' of how blood cells are made in the body.

Discovery helps explain why chemo causes drop in platelet numbers

September 25, 2011
Scientists at the Walter and Eliza Hall Institute have identified a way that chemotherapy causes platelet numbers to drop, answering in the process a decade-old question about the formation of platelets, tiny cells that allow ...

Single drug and soft environment can increase platelet production: research

July 13, 2011
Humans produce billions of clot-forming platelets every day, but there are times when there aren't enough of them, such as with certain diseases or during invasive surgery. Now, University of Pennsylvania researchers have ...

Single drug, soft environment can increase platelet production

July 8, 2011
(Medical Xpress) -- Humans produce billions of clot-forming platelets every day, but there are times when there aren’t enough of them, such as with certain diseases or during invasive surgery. Now, University of Pennsylvania ...

Recommended for you

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.