Research opens way to significant improvements for medication

March 27, 2012, University of Otago

International research co-authored by the University of Otago, Christchurch has unraveled a century old scientific mystery, opening the way to significant improvements in the way drugs are delivered to the body.

The research into , explains why and how this is the most abundant in blood, and will enable medication to be better targeted to the needs of individual patients. The study has recently been published in the prestigious international journal Nature Communications.

“This is an exciting development we have worked on for some time and which has just been recognised by the international pharmaceutical industry as a major advance in technology,” says Professor Stephen Brennan from the University of Otago, Christchurch.

The research in association with scientists in Norway, the UK and Novozymes Biopharma, has been awarded the premier prize for the most exciting delivery technology of the year at the Delivery Partnerships conference in the USA.

“Essentially what our research reveals is a way to develop different variants of the albumin molecule in the blood, to which many drugs bind, and which is used to transport medications around the body.”

“This means if you want a drug to remain in the body longer for greater effect, or to avoid a patient having to take so many pills or injections, you can adjust the half-life of the albumin molecule to achieve this.”

Brennan says this has major implications for better tailoring of medication to specific needs of patients. In particular albumin could be used as a carrier protein for short-lived therapeutic peptides or hormones.

At present it is difficult to determine the most beneficial dosage regimen because the albumin molecules half-life can’t be altered. This research changes all that, providing a new pathway to manipulate albumin molecules and adjust a drug’s half-life within the patient, allowing improved therapeutic effects.

Scientifically the study shows that albumin molecules, instead of dying and being absorbed by endothelial cells lining the blood vessel, actually bind to a receptor in these cells and are then recycled back into the blood stream.

“We’ve established for the first time that when the pH inside the cell vesicles drops, then albumin binds to the Fc receptor in the cell, rather like a magnet. The albumin then gets transported back to the surface of the cell, to be released once more into the blood stream to do its work.”

Professor Brennan says the discovery of this unique cellular recycling process that maintains the high volume of serum albumin in , carrying vital fatty acids, hormones and amino acids around the body, opens the possibility of adjusting albumin molecules to the requirements of specific medications.

Explore further: Scientists make human blood protein from rice

Related Stories

Scientists make human blood protein from rice

October 31, 2011
Scientists at a Chinese university said Monday they can use rice to make albumin, a protein found in human blood that is often used for treating burns, traumatic shock and liver disease.

Recommended for you

Anemia discovery offers new targets to treat fatigue in millions

January 22, 2018
A new discovery from the University of Virginia School of Medicine has revealed an unknown clockwork mechanism within the body that controls the creation of oxygen-carrying red blood cells. The finding sheds light on iron-restricted ...

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.