Agent reduces autism-like behaviors in mice

April 25, 2012
A mouse pays a social visit to a novel animal. Credit: MuYang, Ph.D., and Jacqueline Crawley, Ph.D., NIMH Laboratory of Behavioral Neuroscience

National Institutes of Health researchers have reversed behaviors in mice resembling two of the three core symptoms of autism spectrum disorders (ASD). An experimental compound, called GRN-529, increased social interactions and lessened repetitive self-grooming behavior in a strain of mice that normally display such autism-like behaviors, the researchers say.

GRN-529 is a member of a class of agents that inhibit activity of a subtype of receptor protein on for the , which are being tested in patients with an autism-related syndrome. Although findings often don't translate to humans, the fact that these compounds are already in clinical trials for an overlapping condition strengthens the case for relevance, according to the researchers.

"Our findings suggest a strategy for developing a single treatment that could target multiple diagnostic symptoms," explained Jacqueline Crawley, Ph.D., of the NIH's National Institute of Mental Health (NIMH). "Many cases of autism are caused by in genes that control an ongoing process – the formation and maturation of synapses, the connections between neurons. If defects in these connections are not hard-wired, the core symptoms of autism may be treatable with medications."

Crawley, Jill Silverman, Ph.D., and colleagues at NIMH and Pfizer Worldwide Research and Development, Groton, CT, report on their discovery April 25th, 2012 in the journal Science Translational Medicine.

The video will load shortly
The video shows an untreated BTBR mouse absorbed in repetitive self-grooming. Credit: MuYang, Ph.D., Adam Katz, and Jacqueline Crawley, Ph.D., NIMH Laboratory of Behavioral Neuroscience

"These new results in mice support NIMH-funded research in humans to create treatments for the core symptoms of autism," said NIMH director Thomas R. Insel, M.D. "While autism has been often considered only as a disability in need of rehabilitation, we can now address autism as a disorder responding to biomedical treatments."

Crawley's team followed-up on clues from earlier findings hinting that inhibitors of the receptor, called mGluR5, might reduce ASD symptoms. This class of agents – compounds similar to GRN-529, used in the mouse study – are in for patients with the most common form of inherited intellectual and developmental disabilities, Fragile X syndrome, about one third of whom also meet criteria for ASDs.

To test their hunch, the researchers examined effects of GRN-529 in a naturally occurring inbred strain of mice that normally display autism-relevant behaviors. Like children with ASDs, these BTBR mice interact and communicate relatively less with each other and engage in repetitive behaviors – most typically, spending an inordinate amount of time grooming themselves.

Crawley's team found that BTBR mice injected with GRN-529 showed reduced levels of repetitive self-grooming and spent more time around – and sniffing nose-to-nose with – a strange mouse.

Moreover, GRN-529 almost completely stopped repetitive jumping in another strain of mice.

"These inbred strains of mice are similar, behaviorally, to individuals with autism for whom the responsible genetic factors are unknown, which accounts for about three fourths of people with the disorders," noted Crawley. "Given the high costs – monetary and emotional – to families, schools, and health care systems, we are hopeful that this line of studies may help meet the need for medications that treat core symptoms."

Explore further: Repetitive behaviors in adults with Autism Spectrum disorders significantly lessen with antidepressant treatment

More information: Silverman JL, Smith DG, Rizzo SJS, Karras MN, Turner SM, Tolu SS, Bryce DK, Smith DL, Fonseca K, Ring RH, Crawley, JN. Negative allosteric modulation of the MGluR5 receptor reduces repetitive behaviors and rescues social deficits in mouse models of autism. April 25, 2012, Science Translational Medicine.

Related Stories

Recommended for you

Autism biomarker seen as boon for new treatments

January 11, 2017

Researchers at the UCLA Center for Autism Research and Treatment have identified a signature brain-wave pattern for children with autism spectrum disorder related to a genetic condition known as Dup15q syndrome. The research ...

Lab confirms vitamin D link to autism traits

December 14, 2016

Researchers at The University of Queensland's Queensland Brain Institute have found a link between vitamin D deficiency in pregnancy and increased autism traits.

Neuromotor problems at the core of autism, study says

December 12, 2016

Rutgers neuroscientists have established that problems controlling bodily movements are at the core of autism spectrum disorders and that the use of psychotropic medications to treat autism in children often makes such neuromotor ...

Mutations in life's 'essential genes' tied to autism

December 12, 2016

Genes known to be essential to life—the ones humans need to survive and thrive in the womb—also play a critical role in the development of autism spectrum disorder (ASD), suggests a new study from Penn Medicine geneticists ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.