Blood type A may predispose to some rotavirus infections

April 15, 2012

Whether you become infected by some strains of rotavirus may depend on your blood type.

Some strains of find their way into the cells of the by recognizing antigens associated with the type A blood group, a finding that represents a new paradigm in understanding how this gut pathogen infects humans, said Baylor College of Medicine researchers in an online report in the journal Nature.

Rotavirus is a major intestinal pathogen that is the leading cause of severe dehydration and diarrhea in infants around the world. An estimated 500,000 people worldwide die from the infection annually.

The structure of a key part of a strain of the known as P[14] provides a clue to how the virus infects human cells, said Dr. B. V. Venkataram Prasad, professor of biochemistry and molecular biology at BCM and the report's corresponding author. In strains of rotavirus that infect animals, the top of a spike on the virus attaches to the cell via a glycan (one of many sugars linked together to form complex branched-chain structures) with a terminal molecule of sialic acid. The same did not appear to be true of that infect humans, and scientists believed the human rotavirus strains were bound to glycans with an internal sialic acid molecule, but they did not know how this occurs.

"We wondered how this genotype of rotavirus recognized a cellular glycan," said Prasad. "With colleagues at Emory (University School of Medicine), we did a glycan array analysis to see which glycans interacted with the top of the virus spike (called VP8*)."

The only type of glycan that interacted with VP8* was type A histo-blood group antigen, he said.

"That was surprising," he said. "We thought it had to be a glycan with sialic acid."

The histo-blood group antigen A does not have sialic acid.

However, when Dr. Liya Hu, a post-doctoral researcher in Prasad's laboratory, determined the structure of the VP8* domain, she found that the type A glycan bound to the rotavirus spike protein at the same place as the sialic acid would have in an animal rotavirus. Histo-blood group antigens are known to promote binding of norovirus and Helicobacter pylori cells to intestinal cells, but this had never been demonstrated in rotavirus.

Hu's structural study, using crystallography, showed subtle changes in the structure of the VP8* domain of the virus that allowed it to use the histo-blood group antigen A as a receptor.

In collaboration with the laboratory of Dr. Mary Estes, professor of molecular virology and microbiology at BCM, Prasad and his colleagues found that laboratory cells modified to express the histo-blood group antigen A were easily infected by this rotavirus strain. Cells that lacked this antigen were not easily infected.

An antibody to the histo-blood group antigen A blocked infection by the virus into human intestinal in culture.

"No one expected this," said Prasad. "Is there an emerging theme here with these intestinal pathogens? Do other viruses use these blood group antigens as a door to enter the cell?"

Further studies identified a second rotavirus strain P[9] that uses the histo-blood group antigen as a receptor, he said.

"The question now is do different strains use other histo-blood group antigens in this way?" he said.

Estes said, "These studies are significant because they provide a novel mechanism of transmission for a rotavirus strain that jumps from ungulates (such as horses, zebras, pigs, sheep) into humans."

The authors found humans infected with the P[14] strain had type A blood, but more studies are needed to confirm the connection.

Larger populations of infected individuals need to be studied to determine if there is a clear association of these virus strains using histo-blood group as a receptor," they said.

This finding raises questions about why humans developed different blood groups, Prasad said. It may be an evolutionary change that occurred after the pathogen first invaded .

Explore further: Waging war against rotavirus

Related Stories

Waging war against rotavirus

April 10, 2012
Canada should show leadership in supporting adoption of the rotavirus vaccination in developing countries, but it must also ensure that all Canadian infants are vaccinated against the virus, states an editorial in CMAJ (Canadian ...

Vaccine against epidemic gastroenteritis being tested

December 9, 2011
(Medical Xpress) -- A new vaccine is being tested in the US that may protect against the norovirus, which causes "stomach flu" or acute viral gastroenteritis, that can occur in confined living settings such as cruise ships, ...

Recommended for you

'Human chronobiome' study informs timing of drug delivery, precision medicine approaches

December 13, 2017
Symptoms and efficacy of medications—and indeed, many aspects of the human body itself—vary by time of day. Physicians tell patients to take their statins at bedtime because the related liver enzymes are more active during ...

Estrogen discovery could shed new light on fertility problems

December 12, 2017
Estrogen produced in the brain is necessary for ovulation in monkeys, according to researchers at the University of Wisconsin-Madison who have upended the traditional understanding of the hormonal cascade that leads to release ...

Time of day affects severity of autoimmune disease

December 12, 2017
Insights into how the body clock and time of day influence immune responses are revealed today in a study published in leading international journal Nature Communications. Understanding the effect of the interplay between ...

3-D printed microfibers could provide structure for artificially grown body parts

December 12, 2017
Much as a frame provides structural support for a house and the chassis provides strength and shape for a car, a team of Penn State engineers believe they have a way to create the structural framework for growing living tissue ...

Team identifies DNA element that may cause rare movement disorder

December 11, 2017
A team of Massachusetts General Hospital (MGH) researchers has identified a specific genetic change that may be the cause of a rare but severe neurological disorder called X-linked dystonia parkinsonism (XDP). Occurring only ...

Protein Daple coordinates single-cell and organ-wide directionality in the inner ear

December 11, 2017
Humans inherited the capacity to hear sounds thanks to structures that evolved millions of years ago. Sensory "hair cells" in the inner ear have the amazing ability to convert sound waves into electrical signals and transmit ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.