'Brain-only' mutation causes epileptic brain size disorder

April 11, 2012

Scientists have discovered a mutation limited to brain tissue that causes hemimegalencephaly (HMG), a condition where one half of the brain is enlarged and dysfunctional, leading to intellectual disability and severe epilepsy. The research, published by Cell Press in the April 12 issue of Neuron, has broad significance as a potential model for other complex neuropsychiatric diseases that may also be caused by "brain-only" mutations.

Mutations can be inherited or occur spontaneously. Inherited mutations are present throughout all cells of the body, but some can occur during development and hence be limited to cells in some organs but not others. For some time it has been suspected that there might be neurological diseases that are caused by mutations limited to the brain, but this had not yet been definitively demonstrated as it is very difficult to study brain tissue.

"The striking asymmetry of the brain in individuals with HMG has long suggested that this disease may be caused by a spontaneous mutation restricted to one half of the brain and detectable by direct study of affected brain tissue," explains the study's first author, Dr. Ann Poduri, from Children's Hospital and Harvard Medical School.

Patients with HMG often have dozens of seizures per day, which so interferes with their cognitive development that doctors make the difficult decision to remove brain tissue in a desperate attempt to control the seizures. Fortunately, these operations are frequently successful in controlling seizures and allowing children to develop remarkably normally. Such operations provided brain tissue samples that were used by Dr. Poduri and her colleagues to identify mutations in the AKT3 gene in HMG brain tissue. Previous research has linked AKT3 with the control of . The AKT3 mutations were restricted to the affected brain tissue, and were not evident in , suggesting that the mutation was spontaneous and not inherited.

"Our data suggest that spontaneous mutations resulting in abnormal activation of AKT3 contribute to overgrowth of one-half of the brain. The size and architecture of HMG may be determined in part by the stage at which the mutation occurs relative to the stage of brain development," concludes senior study author, Dr. Christopher Walsh from Children's Hospital Boston, Howard Hughes Medical Institute, and Harvard Medical School. "It is also notable that, to our knowledge, this is the first disease attributed to mutations that are limited to . There are other epilepsies and that are associated with spontaneous mutations and are therefore also candidates for these sorts of 'brain-only' mutations."

The study was supported by the Howard Hughes Medical Institute, the National Institute of and Stroke, and the National Institute of Mental Health.

Explore further: How brain tumors invade

More information: Poduri et al.: “Somatic Activation of AKT3 Causes Hemispheric Developmental Brain Malformations.” DOI:10.1016/j.neuron.2012.03.010

Related Stories

How brain tumors invade

December 12, 2011
Scientists have pinpointed a protein that allows brains tumors to invade healthy brain tissue, according to work published this week in the Journal of Experimental Medicine.

A new gene thought to be the cause in early-onset forms of Alzheimer's disease

April 4, 2012
A new gene that causes early-onset of Alzheimer's disease has been discovered by the research team of Dominique Campion at the Insert unit 1079 "Genetics of cancer and neuropsychiatric diseases" in Rouen. The research scientists ...

Intellectual disability is frequently caused by non-hereditary genetic problems

April 18, 2011
Mutations in a group of genes associated with brain activity frequently cause intellectual disability, according to a study led by scientists affiliated with the University of Montreal and the research centre at the Centre ...

Understanding Schizophrenia

November 16, 2011
(Medical Xpress) -- Genetic mutations that cause schizophrenia could be linked to systems in the brain responsible for learning and memory, a major University study suggests.

Recommended for you

The neural codes for body movements

July 21, 2017
A small patch of neurons in the brain can encode the movements of many body parts, according to researchers in the laboratory of Caltech's Richard Andersen, James G. Boswell Professor of Neuroscience, Tianqiao and Chrissy ...

Faulty support cells disrupt communication in brains of people with schizophrenia

July 20, 2017
New research has identified the culprit behind the wiring problems in the brains of people with schizophrenia. When researchers transplanted human brain cells generated from individuals diagnosed with childhood-onset schizophrenia ...

Scientists reveal how patterns of brain activity direct specific body movements

July 20, 2017
New research by Columbia scientists offers fresh insight into how the brain tells the body to move, from simple behaviors like walking, to trained movements that may take years to master. The discovery in mice advances knowledge ...

Scientists discover combined sensory map for heat, humidity in fly brain

July 20, 2017
Northwestern University neuroscientists now can visualize how fruit flies sense and process humidity and temperature together through a "sensory map" within their brains, according to new research.

Team traces masculinization in mice to estrogen receptor in inhibitory neurons

July 20, 2017
Researchers at Cold Spring Harbor Laboratory (CSHL) have opened a black box in the brain whose contents explain one of the remarkable yet mysterious facts of life.

Speech language therapy delivered through the Internet leads to similar improvements as in-person treatment

July 20, 2017
Telerehabilitation helps healthcare professionals reach more patients in need, but some worry it doesn't offer the same quality of care as in-person treatment. This isn't the case, according to recent research by Baycrest.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.