New imaging technique could speed cancer detection

April 4, 2012

(Medical Xpress) -- A new imaging technique relies on light and sound to create detailed, color pictures of tumors deep inside the body. The technology, called photoacoustic tomography, may eventually help doctors diagnose cancer earlier than is now possible and to more precisely monitor the effects of cancer treatment — all without the radiation involved in X-rays and CT scans or the expense of MRIs.

Clinical trials are in the planning stages, but studies in animal models have given researchers a lot to get excited about. That’s because the technology can easily penetrate the body’s tissues to visualize tumors at depths never before possible.

“This technology is potentially a game changer, both in how we monitor cancer and in how soon we know it’s there,” says biomedical engineer Lihong V. Wang, PhD., who led the team of developers at Washington University in St. Louis.
For example, the technique could reveal the presence of cancer earlier by showing oxygen use by tissues. Excessive oxygen-burning, called hypermetabolism, is a hallmark of the disease. In the early stages, there isn’t much else to go on, so photoacoustic could alert physicians to the presence of the disease at its earliest stage, Wang says.

Wang explained the technology April 3 at the annual meeting of the American Association for Cancer Research in Chicago. Wang’s presentation follows his publication of a related paper March 23 in Science.

Wang, who is affiliated with the Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, is working with Washington University physicians to evaluate the technology for four uses: identifying the sentinel lymph nodes for breast cancer staging, which may eliminate the need for surgical lymph node biopsies; monitoring early response to chemotherapy; imaging melanomas; and imaging the gastrointestinal tract.

A major challenge for diagnosing is the inability to see small tumors growing in the body. Physicians have come to accept the grayness of X-ray images and CT scans (which are based on X-rays), where structures appear as lights and shadows. But they are a poor substitute for “photographs” of our insides.

No such photographs exist because light can’t penetrate soft tissue. Tissues scatter light, which limits the ability to see anything beyond the depth of about a millimeter. But scattering doesn’t destroy the light, which can reach a depth of about 7 centimeters, or about 3 inches.

Photoacoustic imagery brings together the best of both worlds — light and sound. It converts light absorbed by soft tissues in the body into sound waves, which easily penetrate tissues. The tissue to be imaged is then irradiated by a nanosecond-pulsed laser at an optical wavelength.

Absorption of light by molecules beneath the surface creates a thermally induced pressure jump that launches sound waves, which are measured by ultrasound receivers at the body’s surface and reassembled to create what is, in effect, a photograph.

Photoacoustic images have a much higher contrast than X-ray images because there are many highly colored molecules in the body that naturally serve as contrast agents. These include hemoglobin, which changes color as it gains or loses oxygen, but also melanin, the pigment that makes moles dark, and DNA, which in its condensed form in the cell nucleus is darker than the cell cytoplasm.

With a little help from organic dyes or genes engineered to express colorful products, photoacoustic tomography can also image tissues, such as lymph nodes, that would otherwise blend in with their surroundings.

“Every issue of every top journal publishes exciting lab discoveries, but only a tiny fraction of them are ever translated into clinical practice,” he says. “My hope is that photoacoustic tomography can help translate microscopic lab discoveries into macroscopic clinical practice.”

Explore further: Photoacoustic tomography can 'see' in color and detail several inches beneath the skin

Related Stories

Photoacoustic tomography can 'see' in color and detail several inches beneath the skin

March 22, 2012
Every new imaging technology has an aura of magic about it because it suddenly reveals what had been concealed, and makes visible what had been invisible. So, too, with photoacoustic tomography, which is allowing scientists ...

Photoacoustics technique detects small number of cancer cells

March 27, 2012
Researchers have developed multiple techniques and procedures to detect cancer cells during the earliest stages of the disease or after treatment. But one of the major limitations of these technologies is their inability ...

Recommended for you

Researchers identify gene variants linked to a high-risk children's cancer

September 25, 2017
Pediatric researchers investigating the childhood cancer neuroblastoma have identified common gene variants that raise the risk of an aggressive form of that disease. The discovery may assist doctors in better diagnosing ...

Prostaglandin E1 inhibits leukemia stem cells

September 25, 2017
Two drugs, already approved for safe use in people, may be able to improve therapy for chronic myeloid leukemia (CML), a blood cancer that affects myeloid cells, according to results from a University of Iowa study in mice.

Cancer vaccines need to target T cells that can persist in the long fight against cancer

September 25, 2017
Cancer vaccines may need to better target T cells that can hold up to the long fight against cancer, scientists report.

MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer

September 25, 2017
A new magnetic resonance imaging (MRI) contrast agent being tested by researchers at Case Western Reserve University not only pinpoints breast cancers at early stages but differentiates between aggressive and slow-growing ...

Lung cancer treatment could be having negative health effect on hearts

September 25, 2017
Radiotherapy treatment for lung cancer could have a negative effect on the health of your heart new research has found.

Alternative splicing, an important mechanism for cancer

September 22, 2017
Cancer, which is one of the leading causes of death worldwide, arises from the disruption of essential mechanisms of the normal cell life cycle, such as replication control, DNA repair and cell death. Thanks to the advances ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.