Molecule movements that make us think

April 24, 2012

Every thought, every movement, every heartbeat is controlled by lightning-quick electrical impulses in the brain, the muscles, and the heart. But too much electrical excitability in the membranes of the cells can cause things like epilepsy and cardiac arrhythmia. A research group at Linköping University has now published new discoveries that can lead to new medicines for these diseases.

The key molecules behind the are voltage-activated ion channels – pores in cell membranes, the opening and closing of which are controlled by the electrical potential between the inside and outside of the cell.

Research over the past few years has revealed the ion channels' molecular structure, and how the pores change form when they open and close. On the other hand, the mechanism explaining how the electric potential is detected on the molecular level remains unclear.

The video will load shortly
A research group at Linköping University has built five different molecular models of the voltage sensor in an ion channel, which together can explain all the experimental data. The five models were then linked together to this film which shows how a central part of the voltage detector moves between the outer walls of the voltage sensor. Credit: Fredrik Elinder/Linköping University

LiU researchers have now shown how an ion channel's voltage sensor can change its form. This change of form leads to the pore in the channel opening up.

Ulrike Henrion, Jakob Renhorn, Sara Börjesson, and Erin Nelson, all in Professor Fredrik Elinder's research group, have succeeded through comprehensive experimental work in identifying 20 different molecular interactions that occur in the voltage sensor's different states.

In collaboration with Professor Erik Lindahl's group at the KTH Royal Institute of Technology, and associate professor Björn Wallner at the Department of Physics, Chemistry and Biology at LiU, the group has built five different molecular models of the voltage sensor, which together can explain all the experimental data. The five models were then linked together to a film that shows how a central part of the voltage detector moves between the outer walls of the voltage sensor.

The published work is an important piece of the puzzle in the research group's quest to develop substances with raised electrical excitability, which hopefully can lead to new medicines for and .

Explore further: Timothy syndrome mutations provide new insights into the structure of L-calcium channel

More information: Tracking a complete voltage-sensor cycle with metal-ion bridges by U. Henrion, J. Renhorn, S. I. Börjesson, E. M. Nelson, C. S. Schwaiger, P. Bjelkmar, B. Wallner, E. Lindahl and F. Elinder. Proceedings of the National Academy of Sciences (PNAS) early edition 23-27 April 2012.

Related Stories

Timothy syndrome mutations provide new insights into the structure of L-calcium channel

July 14, 2011
The human genome encodes 243 voltage-gated ion channels. Mutations in calcium channels can cause severe inherited diseases such as migraine, night blindness, autism spectrum disorders and Timothy syndrome, which leads to ...

Atomic structure discovered for a sodium channel that generates electrical signals in living cells

July 13, 2011
Scientists at the University of Washington (UW) in Seattle have determined the atomic architecture of a sodium channel. The achievement opens new possibilities for molecular medicine researchers around the world in designing ...

Recommended for you

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

Omega-3 fatty acids fight inflammation via cannabinoids

July 18, 2017
Chemical compounds called cannabinoids are found in marijuana and also are produced naturally in the body from omega-3 fatty acids. A well-known cannabinoid in marijuana, tetrahydrocannabinol, is responsible for some of its ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.