New MRI technique may predict progress of dementias

April 10, 2012

A new technique for analyzing brain images offers the possibility of using magnetic resonance imaging (MRI) to predict the rate of progression and physical path of many degenerative brain diseases, report scientists at the San Francisco VA Medical Center and the University of California, San Francisco.

The technique, developed by SFVAMC scientists in collaboration with a team led by Bruce Miller, MD, clinical director of the UCSF Memory and Aging Center, also supports mounting evidence that dementias spread through the along specific neuronal pathways in the same manner as .

The scientists employed new computer modeling techniques to realistically predict the physical progression of Alzheimer's disease and frontotemporal dementia (FTD) using images of 14 healthy brains. The models were based on whole-brain tractography, an that maps the , or "communication wires," that connect different areas of the brain. The spread of disease along those pathways, as predicted by the models, closely matched actual of brain degeneration in 18 Alzheimer's patients and 18 FTD patients. Their study was published in the March 22 edition of Neuron.

"The results need to be replicated, but they suggest that, by using this approach, we can predict the location and course of future in Alzheimer's, FTD and other degenerative brain diseases, based on just one MRI taken at the outset of the disease," said senior author Michael Weiner, MD, director of the SFVAMC Center for Imaging of Neurodegenerative Diseases. "This would be extremely useful in planning treatment, and in helping patients and families know what to expect as dementia progresses."

Weiner, who is also a UCSF professor of radiology, medicine, psychiatry and neurology, said that the results were "consistent with an emerging concept that brain damage occurs in these in a diffusive, prion-like propagation."

A prion is an infectious, misfolded form of a normal protein. These proteins leave destructive amyloid deposits in the brains in which they develop, causing degeneration and eventual death. They are responsible for Creutzfeldt-Jakob disease in humans and bovine spongiform encephalopathy, or "mad cow" disease, in cattle. In 1997, neurologist Stanley B. Prusiner of UCSF was awarded the Nobel Prize in Medicine for discovering and characterizing the prion. His finding overturned a tenet of modern biology, showing that a protein, rather than just the molecules DNA and RNA, could cause infection.

"The idea of a prion-like mode of progression in dementias, which many scientists are beginning to support, is that the misfolded protein in one neuron will infect a neighboring brain cell, causing proteins in that cell to misfold in turn, and that the spread of these misfolded proteins flows along certain networks in the brain," explained Weiner. "For instance, in Alzheimer's, there is a spread of amyloid protein along the memory network. This paper reinforces the idea that the damage occurs progressively along that network and others."

Weiner emphasized that Alzheimer's and frontotemporal dementia "are not infectious diseases" like Creutzfeldt-Jakob. But he said "it may be that a little seed of the disease begins in one neuron in the brain and spreads in a similar way – so it's infectious within the brain, from one neuron to the next."

Explore further: Alzheimer's might be transmissible in similar way as infectious prion diseases: study

Related Stories

Alzheimer's might be transmissible in similar way as infectious prion diseases: study

October 4, 2011
The brain damage that characterizes Alzheimer's disease may originate in a form similar to that of infectious prion diseases such as bovine spongiform encephalopathy (mad cow) and Creutzfeldt-Jakob, according to newly published ...

Computer model of spread of dementia can predict future disease patterns years before they occur

March 21, 2012
Researchers at Weill Cornell Medical College have developed a computer program that has tracked the manner in which different forms of dementia spread within a human brain. They say their mathematic model can be used to predict ...

Alzheimer's disease spreads through linked nerve cells, brain imaging studies suggest

March 21, 2012
Alzheimer's disease and other forms of dementia may spread within nerve networks in the brain by moving directly between connected neurons, instead of in other ways proposed by scientists, such as by propagating in all directions, ...

Scientists identify most lethal known species of prion protein

February 9, 2012
Scientists from the Florida campus of The Scripps Research Institute have identified a single prion protein that causes neuronal death similar to that seen in "mad cow" disease, but is at least 10 times more lethal than larger ...

Recommended for you

Study suggests link between autism, pain sensitivity

July 24, 2017
New research by a UT Dallas neuroscientist has established a link between autism spectrum disorder (ASD) and pain sensitivity. 

The neural codes for body movements

July 21, 2017
A small patch of neurons in the brain can encode the movements of many body parts, according to researchers in the laboratory of Caltech's Richard Andersen, James G. Boswell Professor of Neuroscience, Tianqiao and Chrissy ...

Faulty support cells disrupt communication in brains of people with schizophrenia

July 20, 2017
New research has identified the culprit behind the wiring problems in the brains of people with schizophrenia. When researchers transplanted human brain cells generated from individuals diagnosed with childhood-onset schizophrenia ...

Scientists reveal how patterns of brain activity direct specific body movements

July 20, 2017
New research by Columbia scientists offers fresh insight into how the brain tells the body to move, from simple behaviors like walking, to trained movements that may take years to master. The discovery in mice advances knowledge ...

Scientists discover combined sensory map for heat, humidity in fly brain

July 20, 2017
Northwestern University neuroscientists now can visualize how fruit flies sense and process humidity and temperature together through a "sensory map" within their brains, according to new research.

Team traces masculinization in mice to estrogen receptor in inhibitory neurons

July 20, 2017
Researchers at Cold Spring Harbor Laboratory (CSHL) have opened a black box in the brain whose contents explain one of the remarkable yet mysterious facts of life.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.