Nano-syringe delivers combination, targeted brain cancer therapy

April 17, 2012 By Gale Smith, Methodist Hospital System

Nanomedicine researchers at the Methodist Neurological Institute and Rice University have developed a way to selectively kill brain cancer cells by using a tiny syringe to deliver a combination of chemotherapy drugs directly into the cells. These findings will be published in the April 24 issue of the American Chemical Society journal ACS Nano.

Patients with glioblastoma multiforme (GBM), the most common and aggressive malignant , typically have a prognosis of 14-month median survival time despite medical interventions, which currently include surgery, chemotherapy and radiation.

The Rice-Methodist group developed the hydrophilic carbon cluster (HCC) antibody drug enhancement system (HADES), named after the Greek god of the underworld. Through a 20-nanometer syringe, which is 2 million times smaller than a coffee mug, this nanovector successfully delivered a combination of three chemotherapy drugs into GBM cells in vivo, resulting in a high kill rate.

"Without our nano-delivery system, we know that current drug delivery would be highly toxic to patients if we tried to deliver all three of these drugs at once," said David Baskin, M.D., neurosurgeon at the Methodist Neurological Institute, who began his nanomedicine research in 2004 with the late Nobel laureate and Rice chemist Richard Smalley. "But delivered in combination using these nano-syringes, our research demonstrated extreme lethality, with at least a three-fold increase in the number of dead following treatment. The nano-syringes selectively deliver these drugs only to cancer cells, and appear not to be toxic to normal neurons and other non-cancerous ."

HCCs are nanovectors with protective , capable of transporting and delivering drugs and bioactive molecules. In order to bring the carriers close enough to the cancer cells and successfully deliver the chemotherapy combination, three different antibodies were combined with the HCC to allow the nanoparticle to stick to the cell membrane. The drugs stayed inside the HCC until it attached to the cell membrane. Once binding occurred, the drugs were released into the fatty (lipid) environment in the membrane. The chemical properties of the inside the HCC are such that they prefer to accumulate in areas with high concentrations of lipids and avoid areas with high water content, such as the extracellular space.

"A new and exciting advance is that now we have a carrier with protective properties, unlike previous nanotubes which were shown to be toxic," said Martyn Sharpe, the paper's lead author and a scientist with the Methodist NI's department of neurosurgery. "Some of the chemotherapy agents used in this research traditionally perform poorly with GBMs. Now that we've shown a successful kill rate of these cells in vivo, we're looking at treating human tumors that will be grown in immune-compromised mice models."

As personalized medicine continues to evolve, Baskin says this research could also be significant for other forms of cancer, including breast and head and neck cancers.

The paper represents an important collaboration between the laboratories of Baskin at Methodist, and James Tour, Ph.D. with Rice University's Smalley Institute for Nanoscale Science. Further work developing this system and expanding its utility is under way with continued collaboration between these two research groups.

Explore further: Nanoparticles may enhance cancer therapy

Related Stories

Nanoparticles may enhance cancer therapy

February 16, 2012
A mixture of current drugs and carbon nanoparticles shows potential to enhance treatment for head-and-neck cancers, especially when combined with radiation therapy, according to new research by Rice University and the University ...

Methodist Neurosurgeon Makes Quantum Leap on Nano-Level

February 22, 2006
A neurosurgeon at the Methodist Neurological Institute (NI) is the first to use an enzyme-driven technique to label nanotubes with quantum dots, giving scientists a better way to see single-walled carbon nanotubes.

Stealth particles to target tumors

August 31, 2005
Stealth nano particles may some day target tumor cells and deliver medication to specific body locations, according to Penn State chemical engineers.

Nano-Vehicle acts as cluster bomb for tumors

September 18, 2010
Chemotherapy, while an effective cancer treatment, also brings debilitating side effects such as nausea, liver toxicity, and a battered immune system. Now, a new way to deliver this life-saving therapy to cancer patients ...

Cluster bomb for cancer care: Nano-vehicles to deliver chemotherapy treatments on target

August 23, 2010
Chemotherapy, while an effective cancer treatment, also brings debilitating side effects such as nausea, liver toxicity and a battered immune system.

'Nanobubbles' plus chemotherapy equals single-cell cancer targeting

April 9, 2012
Using light-harvesting nanoparticles to convert laser energy into "plasmonic nanobubbles," researchers at Rice University, the University of Texas MD Anderson Cancer Center and Baylor College of Medicine (BCM) are developing ...

Recommended for you

Daily low-dose aspirin may be weapon against ovarian cancer

July 20, 2018
(HealthDay)— One low-dose aspirin a day could help women avoid ovarian cancer or boost their survival should it develop, two new studies suggest.

Discovery of kidney cancer driver could lead to new treatment strategy

July 19, 2018
University of North Carolina Lineberger Comprehensive Cancer Center scientists have uncovered a potential therapeutic target for kidney cancers that have a common genetic change. Scientists have known this genetic change ...

High fruit and vegetable consumption may reduce risk of breast cancer, especially aggressive tumors

July 19, 2018
Women who eat a high amount of fruits and vegetables each day may have a lower risk of breast cancer, especially of aggressive tumors, than those who eat fewer fruits and vegetables, according to a new study led by researchers ...

Sunscreen reduces melanoma risk by 40 per cent in young people

July 19, 2018
A world-first study led by University of Sydney has found that Australians aged 18-40 years who were regular users of sunscreen in childhood reduced their risk of developing melanoma by 40 percent, compared to those who rarely ...

Analysis of prostate tumors reveals clues to cancer's aggressiveness

July 19, 2018
Using genetic sequencing, scientists have revealed the complete DNA makeup of more than 100 aggressive prostate tumors, pinpointing important genetic errors these deadly tumors have in common. The study lays the foundation ...

Complementary medicine for cancer can decrease survival

July 19, 2018
People who received complementary therapy for curable cancers were more likely to refuse at least one component of their conventional cancer treatment, and were more likely to die as a result, according to researchers from ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.