Nano-syringe delivers combination, targeted brain cancer therapy

April 17, 2012 By Gale Smith, Methodist Hospital System

Nanomedicine researchers at the Methodist Neurological Institute and Rice University have developed a way to selectively kill brain cancer cells by using a tiny syringe to deliver a combination of chemotherapy drugs directly into the cells. These findings will be published in the April 24 issue of the American Chemical Society journal ACS Nano.

Patients with glioblastoma multiforme (GBM), the most common and aggressive malignant , typically have a prognosis of 14-month median survival time despite medical interventions, which currently include surgery, chemotherapy and radiation.

The Rice-Methodist group developed the hydrophilic carbon cluster (HCC) antibody drug enhancement system (HADES), named after the Greek god of the underworld. Through a 20-nanometer syringe, which is 2 million times smaller than a coffee mug, this nanovector successfully delivered a combination of three chemotherapy drugs into GBM cells in vivo, resulting in a high kill rate.

"Without our nano-delivery system, we know that current drug delivery would be highly toxic to patients if we tried to deliver all three of these drugs at once," said David Baskin, M.D., neurosurgeon at the Methodist Neurological Institute, who began his nanomedicine research in 2004 with the late Nobel laureate and Rice chemist Richard Smalley. "But delivered in combination using these nano-syringes, our research demonstrated extreme lethality, with at least a three-fold increase in the number of dead following treatment. The nano-syringes selectively deliver these drugs only to cancer cells, and appear not to be toxic to normal neurons and other non-cancerous ."

HCCs are nanovectors with protective , capable of transporting and delivering drugs and bioactive molecules. In order to bring the carriers close enough to the cancer cells and successfully deliver the chemotherapy combination, three different antibodies were combined with the HCC to allow the nanoparticle to stick to the cell membrane. The drugs stayed inside the HCC until it attached to the cell membrane. Once binding occurred, the drugs were released into the fatty (lipid) environment in the membrane. The chemical properties of the inside the HCC are such that they prefer to accumulate in areas with high concentrations of lipids and avoid areas with high water content, such as the extracellular space.

"A new and exciting advance is that now we have a carrier with protective properties, unlike previous nanotubes which were shown to be toxic," said Martyn Sharpe, the paper's lead author and a scientist with the Methodist NI's department of neurosurgery. "Some of the chemotherapy agents used in this research traditionally perform poorly with GBMs. Now that we've shown a successful kill rate of these cells in vivo, we're looking at treating human tumors that will be grown in immune-compromised mice models."

As personalized medicine continues to evolve, Baskin says this research could also be significant for other forms of cancer, including breast and head and neck cancers.

The paper represents an important collaboration between the laboratories of Baskin at Methodist, and James Tour, Ph.D. with Rice University's Smalley Institute for Nanoscale Science. Further work developing this system and expanding its utility is under way with continued collaboration between these two research groups.

Related Stories

Recommended for you

Study shows key enzyme linked to therapy resistance in deadly lung cancer

December 10, 2018
Researchers at The University of Texas MD Anderson Cancer Center have identified a link between an enzyme tied to cancer formation and therapy resistance in patients with epidermal growth factor receptor (EGFR)-mutant non-small ...

A code for reprogramming immune sentinels

December 10, 2018
For the first time, a research team at Lund University in Sweden has successfully reprogrammed mouse and human skin cells into immune cells called dendritic cells. The process is quick and effective, representing a pioneering ...

Researchers develop personalized medicine tool for inherited colorectal cancer syndrome

December 10, 2018
An international team of researchers led by Huntsman Cancer Institute (HCI) at the University of Utah (U of U) has developed, calibrated, and validated a novel tool for identifying the genetic changes in Lynch syndrome genes ...

Potential seen for tailoring treatment for acute myeloid leukemia

December 8, 2018
Advances in rapid screening of leukemia cells for drug susceptibility and resistance are bringing scientists closer to patient-tailored treatment for acute myeloid leukemia (AML).

Study may offer doctors a more effective way to treat neuroblastoma

December 7, 2018
A very large team of researchers, mostly from multiple institutions across Germany, has found what might be a better way to treat patients with neuroblastoma, a type of cancer. In their paper published in the journal Science, ...

Inflammatory bowel disease linked to prostate cancer

December 7, 2018
Men with inflammatory bowel disease have four to five times higher risk of being diagnosed with prostate cancer, reports a 20-year study from Northwestern Medicine.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.