Nano-syringe delivers combination, targeted brain cancer therapy

April 17, 2012 By Gale Smith, Methodist Hospital System

Nanomedicine researchers at the Methodist Neurological Institute and Rice University have developed a way to selectively kill brain cancer cells by using a tiny syringe to deliver a combination of chemotherapy drugs directly into the cells. These findings will be published in the April 24 issue of the American Chemical Society journal ACS Nano.

Patients with glioblastoma multiforme (GBM), the most common and aggressive malignant , typically have a prognosis of 14-month median survival time despite medical interventions, which currently include surgery, chemotherapy and radiation.

The Rice-Methodist group developed the hydrophilic carbon cluster (HCC) antibody drug enhancement system (HADES), named after the Greek god of the underworld. Through a 20-nanometer syringe, which is 2 million times smaller than a coffee mug, this nanovector successfully delivered a combination of three chemotherapy drugs into GBM cells in vivo, resulting in a high kill rate.

"Without our nano-delivery system, we know that current drug delivery would be highly toxic to patients if we tried to deliver all three of these drugs at once," said David Baskin, M.D., neurosurgeon at the Methodist Neurological Institute, who began his nanomedicine research in 2004 with the late Nobel laureate and Rice chemist Richard Smalley. "But delivered in combination using these nano-syringes, our research demonstrated extreme lethality, with at least a three-fold increase in the number of dead following treatment. The nano-syringes selectively deliver these drugs only to cancer cells, and appear not to be toxic to normal neurons and other non-cancerous ."

HCCs are nanovectors with protective , capable of transporting and delivering drugs and bioactive molecules. In order to bring the carriers close enough to the cancer cells and successfully deliver the chemotherapy combination, three different antibodies were combined with the HCC to allow the nanoparticle to stick to the cell membrane. The drugs stayed inside the HCC until it attached to the cell membrane. Once binding occurred, the drugs were released into the fatty (lipid) environment in the membrane. The chemical properties of the inside the HCC are such that they prefer to accumulate in areas with high concentrations of lipids and avoid areas with high water content, such as the extracellular space.

"A new and exciting advance is that now we have a carrier with protective properties, unlike previous nanotubes which were shown to be toxic," said Martyn Sharpe, the paper's lead author and a scientist with the Methodist NI's department of neurosurgery. "Some of the chemotherapy agents used in this research traditionally perform poorly with GBMs. Now that we've shown a successful kill rate of these cells in vivo, we're looking at treating human tumors that will be grown in immune-compromised mice models."

As personalized medicine continues to evolve, Baskin says this research could also be significant for other forms of cancer, including breast and head and neck cancers.

The paper represents an important collaboration between the laboratories of Baskin at Methodist, and James Tour, Ph.D. with Rice University's Smalley Institute for Nanoscale Science. Further work developing this system and expanding its utility is under way with continued collaboration between these two research groups.

Related Stories

Recommended for you

New therapeutic gel shows promise against cancerous tumors

February 21, 2018
Scientists at the UNC School of Medicine and NC State have created an injectable gel-like scaffold that can hold combination chemo-immunotherapeutic drugs and deliver them locally to tumors in a sequential manner. The results ...

Kinase inhibitor larotrectinib shows durable anti-tumor abilities

February 21, 2018
Three simultaneous safety and efficacy studies of the drug larotrectinib reported an overall response rate of 75 percent for patients ages four months to 76 years with 17 different cancer diagnoses. All patients had tumors ...

Five novel genetic changes linked to pancreatic cancer risk

February 21, 2018
In what is believed to be the largest pancreatic cancer genome-wide association study to date, researchers at the Johns Hopkins Kimmel Cancer Center and the National Cancer Institute, and collaborators from over 80 other ...

Similarities found in cancer initiation in kidney, liver, stomach, pancreas

February 21, 2018
Recent research at Washington University School of Medicine in St. Louis demonstrated that mature cells in the stomach sometimes revert back to behaving like rapidly dividing stem cells. Now, the researchers have found that ...

Research could change how doctors treat leukemia and other cancers fed by fat

February 21, 2018
Obesity and cancer risk have a mysterious relationship, with obesity increasing the risk for 13 types of cancer. For some cancers—including pediatric cancers—obesity affects survival rates, which are lower for people ...

New technique predicts gene resistance to cancer treatments

February 21, 2018
Yale School of Public Health researchers have developed a new method to predict likely resistance paths to cancer therapeutics, and a methodology to apply it to one of the most frequent cancer-causing genes.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.