Obese patients face higher radiation exposure from CT scans -- but new technology can help

April 5, 2012, Rensselaer Polytechnic Institute
A new study from Rensselaer Polytechnic Institute is the first to calculate exactly how much additional radiation obese patients receive from a CT scan. Research results show the internal organs of obese men receive 62 percent more radiation during a CT scan than those of normal weight men. For obese women, it was an increase of 59 percent. New technology developed at Rensselaer by nuclear engineering expert X. George Xu could help solve this problem. Xu's research team created ultra-realistic 3-D computer models of overweight and obese men and women, and used computer simulations to determine how X-rays interact with the different body types. These models, known as "phantoms," can help empower physicians to configure and optimize CT scanning devices in such a way that minimizes how much radiation a patient receives. Credit: Rensselaer/Ding

Most medical imaging equipment is not designed with overweight and obese patients in mind. As a result, these individuals can be exposed to higher levels of radiation during routine X-ray and CT scans.

A new study from Rensselaer Polytechnic Institute is the first to calculate exactly how much additional radiation obese patients receive from a CT scan. Research results show the internal organs of receive 62 percent more radiation during a CT scan than those of normal weight men. For obese women, it was an increase of 59 percent.

New technology developed at Rensselaer by nuclear engineering expert X. George Xu could help solve this problem. Xu's research team created ultra-realistic 3-D computer models of overweight and obese men and women, and used to determine how X-rays interact with the different body types. These models, known as "phantoms," can help empower physicians to configure and optimize CT in such a way that minimizes how much radiation a patient receives.

" is cumulative over a patient's lifetime. The risk associated with a radiation dose from a single CT scan is relatively small when compared with the of the procedure. But patients are increasingly undergoing multiple CT scans and other radiation-based procedures, which can lead to unnecessary radiation risk. Regretfully, our study shows that obese and can be exposed to an even greater level of radiation," said Xu, head of the Nuclear Engineering Program and a professor in the Department of Mechanical, Aerospace, and Nuclear Engineering (MANE) at Rensselaer. "Our new study brings us one step closer to minimizing radiation exposure and mitigating this risk to patients."

Results of the Xu's study were published today in the journal Physics in Medicine & Biology. The study may be viewed online at: http://m.iopscience.iop.org/0031-9155/57/9/2441

Currently, if technicians use normal equipment settings to perform a CT scan on an obese patient, the resulting images are blurry as the X-ray photons have to travel further and make their way through layers of fat. As a result, technicians generally adjust the equipment to a more powerful setting, which produces a better image but exposes the obese patient to additional radiation. There is no mechanism for discerning the setting levels that will provide an optimal balance of the highest image clarity and the lowest radiation dose.

These new phantoms for overweight and will be part of a forthcoming software package, VirtualDose, developed by Xu and his team. VirtualDose aims to enable the creation of a personalized, ultra-realistic phantom of any patient undergoing a CT scan. The program takes into consideration a patient's individual characteristics, including age, sex, height, weight, and even if a woman is pregnant. By entering these data into the software, VirtualDose quickly creates a phantom that accurately models the patient's . These phantoms will allow physicians and researchers to compare the radiation doses a patient will get from different CT scanner settings, and then choose the most appropriate configuration.

VirtualDose will also enable physicians to keep a highly accurate record of how much radiation patients are exposed to over their lifetime. California recently became the first state in the United States to require records for patients undergoing CT examinations.

Explore further: Breast shields better at reducing dose than posteriorly centered partial CT, study finds

More information: Extension of RPI-adult male and female computational phantoms to obese patients and a Monte Carlo study of the effect on CT imaging dose, Phys. Med. Biol. 57 (2012) 2441-2459. iopscience.iop.org/0031-9155/57/9/2441

Related Stories

Breast shields better at reducing dose than posteriorly centered partial CT, study finds

May 4, 2011
The use of breast shields is the technique of choice to protect the breasts of women from radiation exposure while undergoing chest CT examinations, according to a new study.

Experts offer pointers for optimizing radiation dose in chest CT

September 1, 2011
An article in the September issue of the Journal of the American College of Radiology summarizes methods for radiation dose optimization in chest computed tomography (CT) scans. Chest CT is the third most commonly performed ...

Community hospital implements successful CT radiation dose reduction program

August 1, 2011
In an effort to reduce the radiation dose delivered by computed tomography (CT) scans, staff at a community-based hospital developed a comprehensive CT radiation dose reduction program which has allowed them to reduce the ...

Recommended for you

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

Scientists unleash power of genetic data to identify disease risk

January 16, 2018
Massive banks of genetic information are being harnessed to shed new light on modifiable health risks that underlie common diseases.

Blood-vessel-on-a-chip provides insight into new anti-inflammatory drug candidate

January 15, 2018
One of the most important and fraught processes in the human body is inflammation. Inflammatory responses to injury or disease are crucial for recruiting the immune system to help the body heal, but inflammation can also ...

Molecule produced by fat cells reduces obesity and diabetes in mice

January 15, 2018
UC San Francisco researchers have discovered a new biological pathway in fat cells that could explain why some people with obesity are at high risk for metabolic diseases such as type 2 diabetes. The new findings—demonstrated ...

Obese fat becomes inflamed and scarred, which may make weight loss harder

January 12, 2018
The fat of obese people becomes distressed, scarred and inflamed, which can make weight loss more difficult, research at the University of Exeter has found.

Optimized human peptide found to be an effective antibacterial agent

January 11, 2018
A team of researchers in the Netherlands has developed an effective antibacterial ointment based on an optimized human peptide. In their paper published in the journal Science Translational Medicine, the group describes developing ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.