How Parkinson's disease starts and spreads

April 16, 2012

Injection of a small amount of clumped protein triggers a cascade of events leading to a Parkinson's-like disease in mice, according to an article published online this week in the Journal of Experimental Medicine.

Progressive accumulation of clumps of the protein alpha-synuclein in the brains of patients with Parkinson's disease coincides with the onset of . However, whether these clumps are sufficient to trigger neurodegeneration, and how these clumps spread throughout the brain, remained unclear.

To answer these questions, a team led by Virginia M.Y. Lee at the University of Pennsylvania School of Medicine studied mice expressing a mutated form of alpha-synuclein found in patients with Parkinson's disease. These mice show symptoms of disease around one year of age but not earlier.

Lee and colleagues found that injecting preformed clumps of human alpha-synuclein into the brains of young mice accelerated disease onset and severity. These clumps seemed to act as "seeds" that recruited even the mouse version of alpha-synuclein into new clumps, which then spread throughout the brain. The pattern of spreading from neuron to neuron suggests that the clumps may hijack the highway traveled by normal brain signals.

These findings suggest that Parkinson's disease, like other including Alzheimer's, may start and progress due to abnormal aggregation and accumulation of proteins within the brain. What gets these clumps going in the first place remains unclear.

Explore further: SUMO defeats protein aggregates that typify Parkinson's disease

More information: Hung, L.W., et al. 2012. J. Exp. Med. doi:10.1084/jem.20112285

Related Stories

SUMO defeats protein aggregates that typify Parkinson's disease

July 11, 2011
A small protein called SUMO might prevent the protein aggregations that typify Parkinson's disease (PD), according to a new study in the July 11, 2011, issue of The Journal of Cell Biology.

Seeds of destruction in Parkinson's disease: Spread of diseased proteins kills neurons

October 5, 2011
New research suggests that small "seed" amounts of diseased brain proteins can be taken up by healthy neurons and propagated within them to cause neurodegeneration. The research, published by Cell Press in the October 6 issue ...

Structure of Parkinson's disease protein identified

October 24, 2011
A team of researchers from the Petsko-Ringe and Pochapsky laboratories at Brandeis have produced and determined the structure of alpha-synuclein, a key protein associated with Parkinson’s disease.

Recommended for you

Data, technology drive new approaches to Parkinson's care

October 23, 2017
Complex, multi-system diseases like Parkinson's have long posed challenges to both scientists and physicians. University of Rochester Medical Center (URMC) researchers are now reaching for new tools, such as algorithms, ...

Investigating the most common genetic contributor to Parkinson's disease

October 19, 2017
LRRK2 gene mutations are the most common genetic cause of Parkinson's disease (PD), but the normal physiological role of this gene in the brain remains unclear. In a paper published in Neuron, Brigham and Women's Hospital ...

Scientists solve 3-D structure of key defense protein against Parkinson's disease

October 5, 2017
Scientists at the University of Dundee have identified the structure of a key enzyme that protects the brain against Parkinson's disease.

Novel protein interactions explain memory deficits in Parkinson's disease

September 26, 2017
A study published in the journal Nature Neuroscience describes the identification of a novel molecular pathway that can constitute a therapeutic target for cognitive defects in Parkinson's disease. The study showed that abnormal ...

Psychosis in Parkinson's dementia—new treatment provides hope

September 25, 2017
New research involving King's College London and the University of Exeter has highlighted the benefits of a promising new treatment which could relieve psychosis in thousands of people with dementia related to Parkinson's ...

Bicycling 'overloads' movement networks with Parkinson's

September 23, 2017
(HealthDay)—Bicycling suppresses abnormal beta synchrony in the Parkinsonian basal ganglia, according to a study published online Sept. 11 in the Annals of Neurology.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.