Scientists identify mechanism that could contribute to problems in Alzheimer's

April 26, 2012, Gladstone Institutes

Scientists at the Gladstone Institutes have unraveled a process by which depletion of a specific protein in the brain contributes to the memory problems associated with Alzheimer's disease. These findings provide new insights into the disease's development and may lead to new therapies that could benefit the millions of people worldwide suffering from Alzheimer's and other devastating neurological disorders.

The study, led by Gladstone Investigator Jorge J. Palop, PhD, revealed that low levels of a protein, called Nav1.1, disrupt the electrical activity between . Such activity is crucial for healthy and memory. Indeed, the researchers found that restoring Nav1.1 levels in mice that were genetically modified to mimic key aspects of Alzheimer's disease (AD-mice) improved learning and and increased their lifespan. They report their findings in the April 27 issue of Cell, available online today.

"It is estimated that more than 30 million people worldwide suffer from Alzheimer's disease and that number is expected to rise dramatically in the near future," said Lennart Mucke, MD, who directs at Gladstone, an independent and nonprofit biomedical-research organization. "This research improves our understanding of the biological processes that underlie in this disease and could open the door for new therapeutic interventions."

The researchers' findings suggest that Nav1.1 levels in special regulatory called parvalbumin cells, or , are essential to generate healthy brain-wave activity—and that problems in this process contribute to cognitive decline in AD-mice and possibly in patients with Alzheimer's.

In the brain, neurons form highly interconnected networks, using chemical and electrical signals to communicate with each other. The researchers investigated whether this communication between neurons is disrupted in AD-mice, and if so, how this may affect the symptoms of Alzheimer's disease.

To study this, they performed electroencephalogram (EEG) recordings—a technique that detects abnormalities in the brain's electrical waves such as those found in patients with epilepsy. They found that similar abnormalities emerged during periods of reduced gamma-wave oscillations—a type of brain wave that is crucial to regulating .

"Like a conductor in an orchestra, PV cells regulate brain rhythms by precisely controlling excitatory brain activity," said Laure Verret, PhD, postdoctoral fellow and lead author. "We found that PV cells in patients with Alzheimer's and in AD-mice have low levels of the protein Nav1.1—likely contributing to PV cell dysfunction. As a consequence, AD-mice had abnormal brain rhythms. By restoring Nav1.1 levels, we were able to re-establish normal brain function."

Indeed, the scientists found that increasing Nav1.1 levels in PV cells improves brain wave activity, learning, memory and survival rates in AD-mice.

"Enhancing Nav1.1 activity, and consequently improving PV cell function, may help in the treatment of Alzheimer's disease and other neurological disorders associated with gamma-wave alterations and cognitive impairments such as epilepsy, autism and schizophrenia," said Dr. Palop, who is also an assistant professor of neurology at the University of California, San Francisco, with which Gladstone is affiliated. "These findings may allow us to develop therapies to help patients with these devastating diseases."

Related Stories

Recommended for you

Rocky start for Alzheimer's drug research in 2018

January 19, 2018
The year 2018, barely underway, has already dealt a series of disheartening blows to the quest for an Alzheimer's cure.

Alzheimer's disease: Neuronal loss very limited

January 17, 2018
Frequently encountered in the elderly, Alzheimer's is considered a neurodegenerative disease, which means that it is accompanied by a significant, progressive loss of neurons and their nerve endings, or synapses. A joint ...

Anxiety: An early indicator of Alzheimer's disease?

January 12, 2018
A new study suggests an association between elevated amyloid beta levels and the worsening of anxiety symptoms. The findings support the hypothesis that neuropsychiatric symptoms could represent the early manifestation of ...

One of the most promising drugs for Alzheimer's disease fails in clinical trials

January 11, 2018
To the roughly 400 clinical trials that have tested some experimental treatment for Alzheimer's disease and come up short, we can now add three more.

Different disease types associated with distinct amyloid-beta prion strains found in Alzheimer's patients

January 9, 2018
An international team of researchers has found different disease type associations with distinct amyloid-beta prion strains in the brains of dead Alzheimer's patients. In their paper published in Proceedings of the National ...

Advances in brain imaging settle debate over spread of key protein in Alzheimer's

January 5, 2018
Recent advances in brain imaging have enabled scientists to show for the first time that a key protein which causes nerve cell death spreads throughout the brain in Alzheimer's disease - and hence that blocking its spread ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.