Scientists find possible cause of movement defects in spinal muscular atrophy

April 11, 2012

(Medical Xpress) -- An abnormally low level of a protein in certain nerve cells is linked to movement problems that characterize the deadly childhood disorder spinal muscular atrophy, new research in animals suggests.

Spinal , or SMA, is caused when a child’s motor neurons – that send signals from the spinal cord to muscles – produce insufficient amounts of what is called survival motor neuron protein, or SMN. This causes motor neurons to die, leading to muscle weakness and the inability to move.

Though previous research has established the disease’s genetic link to SMN in motor neurons, scientists haven’t yet uncovered how this lack of SMN does so much damage. Some children with the most severe form of the disease die before age 2.

A research team led by Ohio State University scientists showed in zebrafish that when SMN is missing – in cells throughout the body as well as in motor neurons specifically – levels of a protein called plastin 3 also decrease.

When the researchers added plastin 3 back to motor neurons in zebrafish that were genetically altered so they couldn’t produce SMN, the zebrafish regained most of their swimming abilities movement that had been severely limited by their reduced SMN. These findings tied the presence of plastin 3 – alone, without SMN – to the recovery of lost movement.

The recovery was not complete. Fish without SMN in their cells still eventually died, so the addition of plastin 3 alone is not a therapeutic option. But further defining this protein’s role increases understanding of how spinal muscular atrophy develops.

“What all is lost when SMN is lost? That’s something we’re still struggling with,” said Christine Beattie, associate professor of neuroscience at Ohio State and lead author of the study.

“We think part of the motor neuron defects that are seen in spinal muscular atrophy are caused by this decrease in plastin 3 we get when SMN is lowered. And when we add plastin 3 back to motor neurons we can rescue defects that are seen when SMN is decreased, suggesting that a decrease in plastin 3 is contributing to some of the disease’s characteristics.”

The study is published in the April 11, 2012, issue of The Journal of Neuroscience.

Spinal muscular atrophy (SMA) is a fatal genetic disorder that strikes about one in every 6,000 babies born in the United States. According to the National Institutes of Health, there are many types of SMA, and life expectancy depends on how the disease affects breathing. There is no cure, but medicines and physical therapy help treat symptoms.

Beattie and colleagues began this line of work several years ago after a clinician compared the blood of siblings – one with mild spinal muscular atrophy and one who was unaffected – and found that the unaffected child’s plastin 3 levels were higher than those in the sibling with .

The Ohio State researchers are using animal studies to pinpoint the role of plastin 3 in this disease, and specifically how it relates to SMN, the protein known to be lacking in children with spinal muscular atrophy. Beattie is an expert in using the zebrafish model for studies of motor neurons and other aspects of the central nervous system.

She and colleagues ran a series of experiments to test the relationship between the SMN protein and plastin 3. In zebrafish genetically altered so they don’t produce SMN, plastin 3 levels remained low, as well. When the researchers created opposite conditions – lowering plastin 3 first in the fish – SMN was unaffected. This showed that the plastin 3 decrease occurred only when SMN was lowered first. And when SMN production was stimulated in zebrafish initially lacking the protein, plastin 3 levels were restored as well.

“All this showed a relationship between SMN and plastin 3. It’s not a random event,” Beattie said.

Genes make proteins in cells over the course of numerous steps. Through additional experiments, the researchers determined that decreased SMN influences plastin 3 production at a late point in the process called translation, when amino acids are strung together to form the protein’s initial shape. This means that the lack of SMN creates conditions in which too little plastin 3 is made to complete the protein’s normal functions – in these , the reduction was about four-fold.

Knowing this, Beattie and colleagues plan to study other proteins that may rely on SMN for their production.

“This is telling us that maybe SMN is affecting translation of other proteins that could be contributing to . That hasn’t been shown before,” Beattie said.

An examination of zebrafish motor neurons suggested that decreased plastin 3 affects these cells in at least two ways: by damaging axons, branch-like extensions that allow for communication among nerve cells, and by destabilizing synapses, structures through which those signals pass, Beattie said.

She and colleagues also examined fish behavior associated with protein changes. In zebrafish genetically altered so they don’t produce the SMN and therefore have lowered levels of plastin 3, the researchers added back small amounts of plastin 3 to their motor neurons through additional genetic manipulations. As a result of the added plastin 3, the fish recovered their ability to turn and swim, movements they were previously unable to make.

“We’ve rescued axons, synaptic proteins and behavior all by putting plastin 3 back in ,” she said. “That’s very encouraging.”

Explore further: Failure in nerve-fiber navigation corrected in zebrafish model, suggests possibility of drug treatment

Related Stories

Failure in nerve-fiber navigation corrected in zebrafish model, suggests possibility of drug treatment

June 6, 2011
Spinal muscular atrophy (SMA) is the leading genetic cause of death in children under 2, with no treatment other than supportive care. In the Proceedings of the National Academy of Sciences, researchers at Children's Hospital ...

Researchers find synthetic RNA lessens severity of fatal disease

November 21, 2011
A team of University of Missouri researchers have found that targeting a synthetic molecule to a specific gene could help the severity of the disease Spinal Muscular Atrophy (SMA) – the leading genetic cause of infantile ...

Recommended for you

Researchers find monkey brain structure that decides if viewed objects are new or unidentified

August 18, 2017
A team of researchers working at the University of Tokyo School of Medicine has found what they believe is the part of the monkey brain that decides if something that is being viewed is recognizable. In their paper published ...

Artificial neural networks decode brain activity during performed and imagined movements

August 18, 2017
Artificial intelligence has far outpaced human intelligence in certain tasks. Several groups from the Freiburg excellence cluster BrainLinks-BrainTools led by neuroscientist private lecturer Dr. Tonio Ball are showing how ...

Study of nervous system cells can help to understand degenerative diseases

August 18, 2017
The results of a new study show that many of the genes expressed by microglia differ between humans and mice, which are frequently used as animal models in research on Alzheimer's disease and other neurodegenerative disorders.

How whip-like cell appendages promote bodily fluid flow

August 18, 2017
Researchers at Nagoya University have identified a molecule that enables cell appendages called cilia to beat in a coordinated way to drive the flow of fluid around the brain; this prevents the accumulation of this fluid, ...

Researchers make surprising discovery about how neurons talk to each other

August 17, 2017
Researchers at the University of Pittsburgh have uncovered the mechanism by which neurons keep up with the demands of repeatedly sending signals to other neurons. The new findings, made in fruit flies and mice, challenge ...

Neurons involved in learning, memory preservation less stable, more flexible than once thought

August 17, 2017
The human brain has a region of cells responsible for linking sensory cues to actions and behaviors and cataloging the link as a memory. Cells that form these links have been deemed highly stable and fixed.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.