New technique could transform epigenetics research

April 26, 2012
The centre of the diagram shows levels of 5mC and 5hmC chemical modifications along a chromosome (section of DNA). The cycle illustrates that after addition to DNA, 5mC (blue) can be converted to 5hmC (red) and then subsequently removed. Image by Miguel Branco

(Medical Xpress) -- Collaboration between scientists at Cambridge University and the Babraham Institute have demonstrated a new technique that will significantly improve scientists' ability to perform epigenetics research and help unlock the door to understanding how cells develop and function. Epigenetics is a branch of genetics that studies modifications to the DNA which affect gene activity. The research, published today (April 26) in the journal Science, has important implications for stem cell research and the development of regenerative medicines.

All the cells in the body have the same DNA sequence (genome), but it is how this DNA sequence is interpreted that results in the formation of different cell types. control how a DNA sequence is interpreted, specifically how different genes are switched on and off in different cell types, tissues and organs.

One of the most studied epigenetic marks is the addition of a very small chemical modification called a to DNA, which turns associated genes off. are always added to the and so this chemical modification is called 5-methylcytosine (5mC). Babraham Institute scientists are involved in researching the role of another DNA in mammals called 5-hydroxymethyl-cytosine (5hmC), which is believed to be important for stem cell function, helping to define how the body develops. 5hmC may be a separate epigenetic mark or possibly be part of the process which removes methyl groups from DNA, allowing genes to be switched on again. Decoding the 'epigenome' will provide greater understanding of how cells are regulated and has major implications for regenerative medicine and how cells such as can be controlled.

Professor Shankar Balasubramanian FRS, of the University of Cambridge Chemistry Department and Cancer Research UK Cambridge Research Institute, and his PhD student Michael Booth invented new chemistry to allow the recently discovered base 5hmC to be sequenced in DNA at single base resolution. This was not possible using existing methods. In a fruitful collaboration between the Cambridge group (led by Balasubramanian) and the Babraham Institute (led by Professor Wolf Reik FRS), this method was applied to sequence 5hmC and 5mC in embryonic stem cell genomic DNA.

Balasubramanian, whose group previously co-invented Solexa sequencing, explained, "Sequencing DNA is becoming an increasingly important part of science and medicine and we are pleased to have met the challenge of finding a way to sequence this important new base modification."

Michael Booth, co-inventor of the technique, said, "We developed a chemistry that was specific for this new modified DNA base, 5hmC. This allowed us to accurately distinguish between 5mC and 5hmC at single base resolution in the genome."

Dr Miguel Branco from the Babraham Institute who is joint lead author commented, "There was a real need in the field for a technique that would map both 5hmC and 5mC in the genome quantitatively and at high resolution. We applied this new technology to embryonic stem cells and immediately recognised its power in furthering our understanding of the biological functions of these DNA modifications."

Professor Wolf Reik who led the study at the Babraham Institute, which receives strategic funding from the Biological Sciences Research Council (BBSRC) said, "It has recently become apparent that in addition to DNA methylation, there are other modifications of DNA, such as for example hydroxymethylation. This suggests that DNA modifications are more dynamic than we previously thought. With the new method we are now in a position to map these modifications at great precision, and to relate them to stem cell function, ageing, and perhaps more generally to how the environment interacts with the genome."

The Babraham Institute undertakes world-leading life sciences research to generate new knowledge of biological mechanisms underpinning ageing, development and the maintenance of health. Professor Michael Wakelam, Director of the Babraham Institute, said, "This is an excellent example of collaboration between research institute and University research scientists. The work will improve our knowledge of how cells develop, with potential long-term benefits to society." In addition to the BBSRC, this research was supported by the MRC, the Wellcome Trust and the EU.

Professor Daan Frenkel ForMemRS, Head of the Department of Chemistry at the University of Cambridge, commented, "This new technique, which reflects the continued innovative work of Professor Balasubramanian and his team, will dramatically change how epigenetic research is conducted. By collaborating with experts at Babraham, they have also demonstrated how the technique will have significant implications for regenerative medicine."

Explore further: Scientists complete first mapping of molecule found in human embryonic stem cells

More information: Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single base resolution, Michael J. Booth, Miguel R. Branco, Gabriella Ficz, David Oxley, Felix Krueger, Wolf Reik & Shankar Balasubramanian, Science (2012)

Related Stories

Scientists complete first mapping of molecule found in human embryonic stem cells

July 21, 2011
Stem cell researchers at UCLA have generated the first genome-wide mapping of a DNA modification called 5-hydroxymethylcytosine (5hmC) in embryonic stem cells, and discovered that it is predominantly found in genes that are ...

Patterns of new DNA letter in brain suggest distinct function

October 30, 2011
In 2009, the DNA alphabet expanded. Scientists discovered that an extra letter or "sixth nucleotide" was surprisingly abundant in DNA from stem cells and brain cells.

Scientists identify seventh and eighth bases of DNA

July 21, 2011
For decades, scientists have known that DNA consists of four basic units -- adenine, guanine, thymine and cytosine. Those four bases have been taught in science textbooks and have formed the basis of the growing knowledge ...

Controlling patterns of DNA methylation

October 28, 2011
A study performed by scientists in Dirk Schübeler's team at the Friedrich Miescher Institute for Biomedical Research in Basel identifies DNA sequences that autonomously determine DNA methylation patterns. Genomic patterns ...

Recommended for you

New approach to studying chromosomes' centers may reveal link to Down syndrome and more

November 20, 2017
Some scientists call it the "final frontier" of our DNA—even though it lies at the center of every X-shaped chromosome in nearly every one of our cells.

Genome editing enhances T-cells for cancer immunotherapy

November 20, 2017
Researchers at Cardiff University have found a way to boost the cancer-destroying ability of the immune system's T-cells, offering new hope in the fight against a wide range of cancers.

A math concept from the engineering world points to a way of making massive transcriptome studies more efficient

November 17, 2017
To most people, data compression refers to shrinking existing data—say from a song or picture's raw digital recording—by removing some data, but not so much as to render it unrecognizable (think MP3 or JPEG files). Now, ...

US scientists try first gene editing in the body

November 15, 2017
Scientists for the first time have tried editing a gene inside the body in a bold attempt to permanently change a person's DNA to try to cure a disease.

Genetic mutation in extended Amish family in Indiana protects against aging and increases longevity (Update)

November 15, 2017
The first genetic mutation that appears to protect against multiple aspects of biological aging in humans has been discovered in an extended family of Old Order Amish living in the vicinity of Berne, Indiana, report Northwestern ...

Genetic variant prompts cells to store fat, fueling obesity

November 13, 2017
Obesity is often attributed to a simple equation: People are eating too much and exercising too little. But evidence is growing that at least some of the weight gain that plagues modern humans is predetermined. New research ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

russcurran
not rated yet May 16, 2012
This is truly very exciting. Understanding that the epigenome can be decoded is amazing and beyond that how the implications for regenerative medicine and how cells such as stem cells can be controlled and influenced has me excited for our future generations!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.