Researchers identify promising biomarkers and new therapeutic targets for kidney cancer

May 31, 2012, Queen's University Belfast

Using blood, urine and tissue analysis of a unique mouse model, a team led by UC Davis researchers has identified several proteins as diagnostic biomarkers and potential therapeutic targets for kidney cancer. Subject to follow-up validation testing, inhibition of these proteins and several related pathways holds promise as a form of therapy to slow the growth of kidney tumors.

In a paper just published online in the journal Cancer Research, the researchers found high concentrations of specific proteins that point to alterations in three sequences of chemical reactions known as of mice implanted with human kidney cancer cells. The findings suggest that modulate the pathways, which in turn makes these pathways potential therapeutic targets.

and cinnamoylglycine, which were altered as a signature of one of the pathways, are just two of approximately 2,000 chemicals, or metabolites, that the human body produces. Metabolites, referring to any substance produced by metabolism, are a reflection of the body's processes in real time. The field of study, known as metabolomics, enables researchers to discover biomarkers and to identify novel therapeutic targets.

The study used metabolomics techniques and instrumentation to simultaneously examine chemicals in two biofluids (urine and serum, or blood) as well as tissue from kidney cancer mice models. Seeking to describe the utility of these fluids as tumor indicators, they found that serum metabolomics analysis is the most accurate proxy of chemical changes that are related to kidney cancer.

"It's exciting to report that our identification of several important metabolic processes may well result in the discovery of diagnostic markers and new therapeutic targets for kidney cancers," said lead author Robert H. Weiss, a professor in the UC Davis Division of Nephrology, Department of Internal Medicine. Currently, there are no tests to easily identify kidney cancer and current treatments are not always successful, so these markers will be important tools for detection and new treatments of the disease.

For the study, researchers transplanted human kidney cancer cells into a mouse model capable of growing human tumors. Researchers compared the metabolites identified in the implanted mice against those in a control group of mice that had surgery, but no implanted.

If further research with mouse models demonstrates that inhibition of the newly identified targets works in therapy, then preparation for human trials will be a next step.

"This research represents collaboration among many kinds of experts, all of whom are concerned that patients have too few treatment options, which often have debilitating side effects," said Weiss, who serves as chief of nephrology at the Sacramento Veterans' Administration Medical Center in addition to his work at UC Davis.

Explore further: Kidney cancer discovery could expand treatment options

Related Stories

Kidney cancer discovery could expand treatment options

June 1, 2011
Oregon Health & Science University Knight Cancer Institute researchers uncovered a gene that may be the key to helping kidney cancer patients who don't respond to current therapies. This discovery could also provide a toolkit ...

Specific inhibition of autophagy may represent a new concept for treatment of kidney cancer

April 16, 2012
New research at the University of Cincinnati (UC) suggests that kidney cancer growth depends on autophagy, a complex process that can provide cells with nutrients from intracellular sources. Researchers say in certain circumstances ...

Cancer-seeking 'smart bombs' target kidney cancer cells

June 6, 2011
Researchers are halting kidney cancer with a novel form of radioimmunotherapy that zeroes in on antigens associated with renal cell carcinoma. Patients with progressive kidney cancer receiving up to three doses of the therapy ...

Metabolic profiles essential for personalizing cancer therapy

February 7, 2012
One way to tackle a tumor is to take aim at the metabolic reactions that fuel their growth. But a report in the February Cell Metabolism shows that one metabolism-targeted cancer therapy will not fit all. That means that ...

FDA clears Pfizer drug for advanced kidney cancer

January 27, 2012
(AP) -- The Food and Drug Administration has approved a new Pfizer drug for patients with advanced kidney cancer that has spread to other parts of the body despite treatment with at least one previous drug.

Recommended for you

Researchers develop a remote-controlled cancer immunotherapy system

January 15, 2018
A team of researchers has developed an ultrasound-based system that can non-invasively and remotely control genetic processes in live immune T cells so that they recognize and kill cancer cells.

Pancreatic tumors may require a one-two-three punch

January 15, 2018
One of the many difficult things about pancreatic cancer is that tumors are resistant to most treatments because of their unique density and cell composition. However, in a new Wilmot Cancer Institute study, scientists discovered ...

New immunotherapy approach boosts body's ability to destroy cancer cells

January 12, 2018
Few cancer treatments are generating more excitement these days than immunotherapy—drugs based on the principle that the immune system can be harnessed to detect and kill cancer cells, much in the same way that it goes ...

Cancer's gene-determined 'immune landscape' dictates progression of prostate tumors

January 12, 2018
The field of immunotherapy - the harnessing of patients' own immune systems to fend off cancer - is revolutionizing cancer treatment today. However, clinical trials often show marked improvements in only small subsets of ...

FDA approves first drug for tumors tied to breast cancer genes

January 12, 2018
(HealthDay)—The U.S. Food and Drug Administration on Friday approved the first drug aimed at treating metastatic breast cancers linked to the BRCA gene mutation.

Breast cancer gene does not boost risk of death: study

January 12, 2018
Young women with the BRCA gene mutation that prompted actress Angelina Jolie's pre-emptive and much-publicised double mastectomy are not more likely to die after a breast cancer diagnosis, scientists said Friday.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.