Diabetes drug could be a promising therapy for traumatic brain injury

May 29, 2012, Tel Aviv University

Although the death toll is relatively low for people who suffer from traumatic brain injury (TBI), it can have severe, life-long consequences for brain function. TBI can impair a patient's mental abilities, impact memory and behavior, and lead to dramatic personality changes. And long-term medical treatment carries a high economic cost.

Now, in research commissioned by the United States Air Force, Prof. Chaim Pick of Tel Aviv University's Sackler Faculty of Medicine and Dr. Nigel Greig of the National Institute of Aging in the US have discovered that Exendin-4, an FDA-approved , significantly minimizes damage in TBI animal models when administered shortly after the initial incident. Originally designed to control sugar levels in the body, the drug has recently been found effective in protecting neurons in disorders such as Alzheimer's disease.

Prof. Pick's collaborators include his TAU colleagues Dr. Vardit Rubovitch, Lital Rachmany-Raber, and Prof. Shaul Schreiber, and Dr. David Tweedie of the National Institute of Aging in the US. Detailed in the journal , this breakthrough is the first step towards developing a cocktail of medications to prevent as much brain damage as possible following injury.

Diabetes medication to halt trauma

Prof. Pick has been researching TBI for many years, beginning with the effects of everyday injuries such as hitting the windshield in a car accident. As a result of his work for the Air Force, he has expanded his research to include trauma sustained when a person is exposed to an explosion, such as during a terrorist attack.

TBI causes long-term damage by changing the chemistry of the brain. During an explosion, increased pressure followed by an intense vacuum shakes the fluid inside the brain and damages the brain's structure. This damage cannot be reversed, but mapping the injury through behavioral and physical tests is crucial to understanding and quantifying the damage and forming a treatment plan through therapy or medication.

Prof. Pick and his colleagues designed a pre-clinical experiment that exposed mice to controlled explosions from 23 and 33 feet away, and then analyzed the resulting injuries. They also studied the effect of Exendin-4 as an additional parameter in minimizing .

The researchers divided their mice into four groups: a control group; a second group that was exposed to the blast without medication; a third group that received the medication but was not exposed to the blast; and a fourth group, exposed to the explosion but given the medication within an hour after the blast and continuing for seven days afterwards. The mice were placed under anaesthesia before the explosion.

Behavioral and physical tests showed that the mice that had been exposed to the blast had severely impaired compared to the control group. However, the mice that had also received the Exendin-4 treatment were almost on a par with the control group in terms of function, proving that Exendin-4 significantly reduced the long-term damage done by an explosion. In separate experiments, the drug was also associated with an improved outcome in mice who sustained TBI by blunt force.

Finding the ideal drug cocktail

Prof. Pick says this promising discovery can help researchers find the ideal combination of medications to minimize the lasting impact of TBI. "We are moving in the right direction. Now we need to find the right dosage and delivery system, then build a cocktail of drugs that will increase the therapeutic value of this concept," he explains. He adds that in treating such traumatic injuries, one drug is unlikely to be sufficient.

This work was also done in collaboration with Dr. Bruce Citron from the American Veterans Association and Dr. Barry Hoffer from the National Institute of Drug Abuse at the National Institute of Health.

Explore further: Skull resconstruction immediately following traumatic brain injury worsens brain damage

Related Stories

Skull resconstruction immediately following traumatic brain injury worsens brain damage

March 22, 2012
Immediate skull reconstruction following trauma that penetrates or creates an indentation in the skull can aggravate brain damage inflicted by the initial injury, a study by a University of South Florida research team reports. ...

Single traumatic brain injury may prompt long-term neurodegeneration

July 18, 2011
Years after a single traumatic brain injury (TBI), survivors still show changes in their brains. In a new study, researchers from the Perelman School of Medicine at the University of Pennsylvania suggest that Alzheimer's ...

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Neuroscientists suggest a model for how we gain volitional control of what we hold in our minds

January 16, 2018
Working memory is a sort of "mental sketchpad" that allows you to accomplish everyday tasks such as calling in your hungry family's takeout order and finding the bathroom you were just told "will be the third door on the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.