Gene discovery points towards non-hormonal male contraceptive

May 24, 2012

A new type of male contraceptive could be created thanks to the discovery of a key gene essential for sperm development.

The finding could lead to alternatives to conventional male contraceptives that rely on disrupting the production of hormones, such as and can cause side-effects such as , and .

Research, led by the University of Edinburgh, has shown how a gene – Katnal1 – is critical to enable sperm to mature in the testes.

If scientists can regulate the Katnal1 gene in the testes, they could prevent sperm from maturing completely, making them ineffective, without changing levels.

The research, which is published in the journal PLoS Genetics, could also help in finding treatments for cases of male infertility, when malfunction of the Katnal1 gene hampers sperm development.

Dr Lee Smith, Reader in Genetic Endocrinology at the Medical Research Council Centre for Reproductive Health at the University of Edinburgh, said: "If we can find a way to target this gene in the testes, we could potentially develop a non-hormonal contraceptive.

"The important thing is that the effects of such a drug would be reversible because Katnal1 only affects sperm cells in the later stages of development, so it would not hinder the early stages of sperm production and the overall ability to produce sperm.

"Although other research is being carried out into non-hormonal male contraceptives, identification of a gene that controls sperm production in the way Katnal1 does is unique and a significant step forward in our understanding of testis biology."

Scientists funded by the Medical Research Council found that male mice, which were modified so they did not have the Katnal1 gene, were infertile.

Further investigation showed that this was because the gene was needed to allow the sperm to develop and mature.

The researchers showed that Katnal1 was needed to regulate a scaffolding structure, known as microtubules, which forms part of the cells that support and provide nutrients to developing sperm.

Break down and rebuilding of these microtubules, enable the sperm cells to move within the testes as they mature. Katnal1 acts as the essential controller of this process.

Explore further: Gene involved in sperm-to-egg binding is key to fertility in mammals

More information: Smith LB, Milne L, Nelson N, Eddie S, Brown P, et al. (2012) KATNAL1 Regulation of Sertoli Cell Microtubule Dynamics Is Essential for Spermiogenesis and Male Fertility. PLoS Genet 8(5): e1002697. doi:10.1371/journal.pgen.1002697

Related Stories

Gene involved in sperm-to-egg binding is key to fertility in mammals

May 1, 2012
Experts from Durham University have identified a new gene that could help the development of fertility treatments in humans in the future.

Recommended for you

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly discovered gene variants link innate immunity and Alzheimer's disease

July 17, 2017
Three new gene variants, found in a genome wide association study of Alzheimer's disease (AD), point to the brain's immune cells in the onset of the disorder. These genes encode three proteins that are found in microglia, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.