Gene therapy for hearing loss: Potential and limitations

May 11, 2012

Regenerating sensory hair cells, which produce electrical signals in response to vibrations within the inner ear, could form the basis for treating age- or trauma-related hearing loss. One way to do this could be with gene therapy that drives new sensory hair cells to grow.

Researchers at Emory University School of Medicine have shown that introducing a gene called Atoh1 into the cochleae of young mice can induce the formation of extra .

Their results show the potential of a gene therapy approach, but also demonstrate its current limitations. The extra produce electrical signals like normal hair cells and connect with neurons. However, after the mice are two weeks old, which is before puberty, inducing Atoh1 has little effect. This suggests that an analogous treatment in adult humans would also not be effective by itself.

The findings were published May 9 in the .

"We've shown that hair cell regeneration is possible in principle," says Ping Chen, PhD, associate professor of at Emory University School of Medicine. "In this paper, we have identified which cells are capable of becoming hair cells under the influence of Atoh1, and we show that there are strong age-dependent limitations on the effects of Atoh1 by itself."

The first author of the paper, Michael Kelly, now a at the National Institute on Deafness and Other Communication Disorders, was a graduate student in Emory's Neuroscience program.

Kelly and his coworkers engineered mice to turn on the Atoh1 gene in the in response to the antibiotic doxycycline. Previous experimenters had used a virus to introduce Atoh1 into the cochleae of animals. This approach resembles , but has the disadvantage of being slightly different each time, Chen says. In contrast, the mice have the Atoh1 gene turned on in specific cells along the lining of the inner ear, called the cochlear , but only when fed doxycycline.

Young mice given doxycycline for two days had extra sensory hair cells, in parts of the cochlea where developing hair cells usually appear, and also additional locations (see accompanying image).

The extra hair cells could generate electrical signals, although those signals weren't as strong as mature hair cells. Also, the extra hair cells appeared to attract neuronal fibers, which suggests that those signals could connect to the rest of the nervous system.

"They can generate , but we don't know if they can really function in the context of hearing." Chen says. "For that to happen, the hair cells' signals need to be coordinated and integrated."

Although could turn on Atoh1 all over the surface of the cochlea, extra sensory hair cells did not appear everywhere. When they removed cochleae from the mice and grew them in culture dishes, her team was able to provoke even more hair cells to grow when they added a drug that inhibits the Notch pathway.

Manipulating the Notch pathway affects several aspects of embryonic development and in some contexts appears to cause cancer, so the approach needs to be refined further. Chen says that it may be possible to unlock the age-related limits on hair cell regeneration by supplying additional genes or drugs in combination with Atoh1, and the results with the Notch drug provide an example.

"Our future goals are to develop approaches to stimulate hair cell formation in older animals, and to examine functional recovery after Atoh1 induction," she says.

Explore further: New clues to human deafness found in mice

More information: M.C. Kelly, Q. Chang, A. Pan, X. Lin and P. Chen. Atoh1 directs the formation of sensory mosaics and induces cell proliferation in the postnatal mammalian cochlea in vivo. J. Neurosci. 32: 699-6710 (2012).

Related Stories

New clues to human deafness found in mice

January 3, 2012
Providing clues to deafness, researchers at Washington University School of Medicine in St. Louis have identified a gene that is required for proper development of the mouse inner ear.

Recommended for you

In witnessing the brain's 'aha!' moment, scientists shed light on biology of consciousness

July 27, 2017
Columbia scientists have identified the brain's 'aha!' moment—that flash in time when you suddenly become aware of information, such as knowing the answer to a difficult question. Today's findings in humans, combined with ...

Scientists block evolution's molecular nerve pruning in rodents

July 27, 2017
Researchers investigating why some people suffer from motor disabilities report they may have dialed back evolution's clock a few ticks by blocking molecular pruning of sophisticated brain-to-limb nerve connections in maturing ...

Social influences can override aggression in male mice, study shows

July 27, 2017
Stanford University School of Medicine investigators have identified a cluster of nerve cells in the male mouse's brain that, when activated, triggers territorial rage in a variety of situations. Activating the same cluster ...

Scientists become research subjects in after-hours brain-scanning project

July 27, 2017
A quest to analyze the unique features of individual human brains evolved into the so-called Midnight Scan Club, a group of scientists who had big ideas but almost no funding and little time to research the trillions of neural ...

Researchers reveal unusual chemistry of protein with role in neurodegenerative disorders

July 27, 2017
A common feature of neurodegenerative diseases is the formation of permanent tangles of insoluble proteins in cells. The beta-amyloid plaques found in people with Alzheimer's disease and the inclusion bodies in motor neurons ...

Mother's brain reward response to offspring reduced by substance addiction

July 27, 2017
Maternal addiction and its effects on children is a major public health problem, often leading to high rates of child abuse, neglect and foster care placement. In a study published today in the journal Human Brain Mapping, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.