Study discovers genetic pathway impacting the spread of cancer cells

May 3, 2012

In a new study from Lawson Health Research Institute, Dr. Joseph Torchia has identified a new genetic pathway influencing the spread of cancer cells. The discovery of this mechanism could lead to new avenues for treatment.

Regular cell division is regulated by methylation, a series of chemical changes. Methylation modifies DNA to ensure cells divide at a healthy, balanced rate. In cancer, the methylation process is unbalanced, causing cells to resist regulation and divide uncontrollably.

Research suggests changes in genetics play a role in this process, yet little is known about the mechanism. In a new study led by Dr. Torchia and his colleagues, a hormone called Transforming Growth Factor Beta (TGF-β) is starting to show the answers. Using genetic sequencing, they analyzed the effects of TGF-β on DNA methylation to reveal a never-before-seen pathway.

When TGF-β comes into contact with a cell it activates the tumor-suppressing gene, which stops the cells from dividing. According to Dr. Torchia's group, ZNF217, a cancer-causing gene, can interfere with this process by binding to the DNA. This prevents the tumour-suppressing genes from activating, and the cells continue to divide.

These results characterize the dynamic processes underlying cell division, suggesting genetic influencers must be balanced to keep under control. Most importantly, they provide hope for new cancer therapies.

"This link between methylation and TGF-β has never been shown before," Dr. Torchia says. "If we understand how methylation is regulated, and identify the machinery that's involved, we may be able to target some of the machinery therapeutically and turn these genes back on to fight the ."

The full study is published in Molecular Cell.

Explore further: The USP15 biological thermostat: A promising novel therapeutic target in cancer

Related Stories

The USP15 biological thermostat: A promising novel therapeutic target in cancer

February 19, 2012
After years studying the molecular bases of glioblastoma - the most common brain tumor and one of the most aggressive of all cancers, the group led by Dr. Joan Seoane , Director of Translational Research at the Vall d'Hebron ...

Regulating nuclear signalling in cancer

August 4, 2011
Research findings published recently in Nature Communications describe a completely new way in which TGFβ receptors regulate nuclear signalling. The findings are significant given that this new signalling pathway seems ...

Recommended for you

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

Novel CRISPR-Cas9 screening enables discovery of new targets to aid cancer immunotherapy

July 19, 2017
A novel screening method developed by a team at Dana-Farber/Boston Children's Cancer and Blood Disorders Center—using CRISPR-Cas9 genome editing technology to test the function of thousands of tumor genes in mice—has ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.