The influence of the mother: Maternal epigenetic inheritance

May 7, 2012
The influence of the mother: maternal epigenetic inheritance

(Medical Xpress) -- A study published in Genes and Development from scientists at the Friedrich Miescher Institute for Biomedical Research pinpoints the importance of maternal epigenetic influences during early embryogenesis in mammals. A chromatin regulatory complex in the oocyte ensures that the proper luggage of maternal transcripts and chromatin structures control the first steps in the formation of an embryo. In the absence of this epigenetic regulator the embryo fails to develop correctly.

At the beginning of life, two highly specialized cells, the sperm and the egg, fuse to form a single totipotent cell that is capable of forming all the cell types in the body. How the cells achieve this complete switch from extreme specialization to potent all-rounder is to date not clear. However, an increasing amount of evidence points to an important role for heritable information that is not encoded by the DNA sequence, but is carried as epigenetic modification on the basic blueprint called the genome. Scientists have shown that the acquisition of totipotency, a capacity to form all the cells in the body, is accompanied by chromatin remodeling in the parental genomes, changes in the maternal and , and the novel activation of the newly formed zygotic genome. How these processes are governed, whether there is a differential from the maternal and paternal genomes in the form of epigenetic marks, and how many changes arise from reprogramming in the fertilized egg itself, are still unclear.

Antoine Peters and his team at the Friedrich Miescher Institute for Biomedical Research are addressing the role of maternal and paternal inheritance in the changes that occur during the conversion to totipotency. In a recent publication in they showed that two chromatin , which form a key part of the Polycomb Group complex called PRC1, specify the maternal contribution to the earliest stages in the development.

During the development of an oocyte, the PRC1 complex ensures that appropriate genes are silenced or actively transcribed. The loss of two key components of PRC1, Ring1 and Rnf2, in oocytes led to massive transcriptional mis-regulation during oocyte growth and, after fertilization, provoked a developmental arrest at the two-cell stage of embryogenesis. This argues that the integrity of the PRC1 complex, and probably the ubiquitin conjugation that is mediated by Ring1 and Rnf2, ensures that the oocyte brings along the right maternal transcripts and chromatin structures to initiate the first steps in embryogenesis. Both cytoplasmic and chromosomal contributions from the maternal side, establish the developmental competence of early embryos.

“Part of the specialization taking place during the formation of the is devoted to ensuring the proper events in the earliest stages of embryogenesis,” comments Peters. “Our work suggests that inherited chromatin states and transcripts from the maternal side direct totipotency by regulating the transcriptional activation or silencing of the genome in the early embryo. This indicates that the newly formed embryo does not start from a clean slate. Epigenetic factors, which may be altered during the development of the oocytes, will have a strong influence on early steps in .”

Explore further: A brighter future for infertility treatment: study

More information: Posfai E, et al. (2012). Polycomb function during oogenesis is required for mouse embryonic development. Genes Dev. 2012 Apr 12. genesdev.cshlp.org/content/26/9/920.long

Related Stories

A brighter future for infertility treatment: study

December 5, 2011
(Medical Xpress) -- Male infertility could soon have a boost through new treatments at a sub-DNA 'epigenetic' level, according to researchers from The Australian National University.

Recommended for you

Genome analysis with near-complete privacy possible, say researchers

August 17, 2017
It is now possible to scour complete human genomes for the presence of disease-associated genes without revealing any genetic information not directly associated with the inquiry, say Stanford University researchers.

Science Says: DNA test results may not change health habits

August 17, 2017
If you learned your DNA made you more susceptible to getting a disease, wouldn't you work to stay healthy?

Genetic variants found to play key role in human immune system

August 16, 2017
It is widely recognized that people respond differently to infections. This can partially be explained by genetics, shows a new study published today in Nature Communications by an international collaboration of researchers ...

Phenotype varies for presumed pathogenic variants in KCNB1

August 16, 2017
(HealthDay)—De novo KCNB1 missense and loss-of-function variants are associated with neurodevelopmental disorders, with or without seizures, according to a study published online Aug. 14 in JAMA Neurology.

Active non-coding DNA might help pinpoint genetic risk for psychiatric disorders

August 16, 2017
Northwestern Medicine scientists have demonstrated a new method of analyzing non-coding regions of DNA in neurons, which may help to pinpoint which genetic variants are most important to the development of schizophrenia and ...

Evolved masculine and feminine behaviors can be inherited from social environment

August 15, 2017
The different ways men and women behave, passed down from generation to generation, can be inherited from our social environment - not just from genes, experts have suggested.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.