As population exploded, more rare genes entered human genome

May 11, 2012 By Krishna Ramanujan, Cornell University

(Medical Xpress) -- As the Earth's human population has skyrocketed since the rise of agriculture some 10,000 years ago -- to 7 billion people from a few million -- so, too, has the number of rare genetic variants.

Since about 2,000 years ago (fewer than 100 generations), the human population has experienced an explosive growth after 8,000 years of moderate exponential growth.

This recent accelerated growth has created more and rare gene variants, which may play a role in boosting the risks of complex diseases in which genes play a role, say Cornell researchers in the May 11 issue of the .

The study found that when a large sample of 10,000 individuals was used in a model of human population growth, rare genetic variants were detected far more frequently than in previous studies. The new model also showed that the vast majority of these rare variants were due to mutations that arose in the past 2,500 years, coinciding with the explosive growth.

Previous models had used small samples with 62 or fewer individuals, or they did not account for the recent increased rate of population growth, and, therefore, they predicted lower numbers of rare genetic variants.

"It is expected that the number of rare alleles [variants of genes] would increase with population growth," said Alon Keinan, the Robert N. Noyce Assistant Professor in Life Science and Technology in the Department of Biological Statistics and , who co-authored the study with Andrew Clark, the Jacob Gould Schurman Professor of and Nancy and Peter Meinig Family Investigator.

"Our conclusions show just how huge of an effect recent explosive growth in humans could have in this regard," Keinan said, adding that the study also shows the importance of considering a very large sample in order to observe the rare variants in the population overall.

The research also has implications for models of genetic disease. Because many different genetic variants can contribute to complex diseases, more rare and new disease-related alleles can increase the risk of disease in different individuals, he said.

The study was funded by the National Institutes of Health and the Alfred P. Sloan Foundation.

Explore further: Experts propose new unified genetic model for human disease

More information: "Recent Explosive Human Population Growth Has Resulted in an Excess of Rare Genetic Variants," by A. Keinan; A.G. Clark at Cornell University in Ithaca, NY. Science (2012).

Related Stories

Experts propose new unified genetic model for human disease

September 29, 2011
Based on a wide variety of genetic studies and analysis– from genome wide association studies looking for common variations in the DNA of many people with complex diseases to the sequencing of specific gene mutations ...

Rare gene variants linked to inflammatory bowel disease

October 10, 2011
(Medical Xpress) -- An international team of scientists, including researchers from Karolinska Institutet, have identified several rare gene variants that predispose to IBD (Inflammatory Bowel Disease). The study provides ...

Is short stature associated with a 'shortage' of genes?

November 23, 2011
New research sifts through the entire genome of thousands of human subjects to look for genetic variation associated with height. The results of the study, published by Cell Press in the December issue of the American Journal ...

Inactive genes surprisingly common in humans

February 16, 2012
(Medical Xpress) -- Every person carries on average 100 variants that disable genes - yet very few suffer ill effects, an international team of researchers led by Yale University and Wellcome Trust Sanger Institute report ...

Recommended for you

Study advances gene therapy for glaucoma

January 16, 2018
While testing genes to treat glaucoma by reducing pressure inside the eye, University of Wisconsin-Madison scientists stumbled onto a problem: They had trouble getting efficient gene delivery to the cells that act like drains ...

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

The surprising role of gene architecture in cell fate decisions

January 16, 2018
Scientists read the code of life—the genome—as a sequence of letters, but now researchers have also started exploring its three-dimensional organisation. In a paper published in Nature Genetics, an interdisciplinary research ...

How incurable mitochondrial diseases strike previously unaffected families

January 15, 2018
Researchers have shown for the first time how children can inherit a severe - potentially fatal - mitochondrial disease from a healthy mother. The study, led by researchers from the MRC Mitochondrial Biology Unit at the University ...

Genes that aid spinal cord healing in lamprey also present in humans

January 15, 2018
Many of the genes involved in natural repair of the injured spinal cord of the lamprey are also active in the repair of the peripheral nervous system in mammals, according to a study by a collaborative group of scientists ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

robert lindsay
not rated yet May 11, 2012
The article is misleading because it assumes that genetic variations have a negative contribution to our species. If that were true, then the theory of evolution is so much rubbish because at best we a devolved from a superior ancestor or perhaps simply created as is. So if you believe the Theory of Evolution then you must accept that some mutations or sets of mutations will have a positive effect on our species. How then will it be determined which ones are desirable or more complexly will eventually lead to genetic changes that are more desirable. As a hypothetical consider the discovery of a genetic mutation which greatly weakens physical strength but also confers resistance to radiation. Such a genetic mutation might have a significant advantage for military Space operations. Finally I believe a variation of genetic coding must be maintained to ensure species robustness and agility against catastrophic events.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.