Rockefeller scientists pioneer new method to determine mechanisms of drug action

May 25, 2012
Sarah Wacker in the Laboratory of Chemistry and Cell Biology

(Medical Xpress) -- Knowing that a drug works is great. Knowing how it works is a luxury. And until now, determining a drug’s mechanism of action has been a tedious and difficult process for scientists.

Researchers led by Tarun Kapoor at The Rockefeller University, in collaboration with Olivier Elemento at Weill Cornell Medical College, have hit on a new method for determining a drug’s molecular target that takes the guesswork out of the equation. The approach makes use of RNA sequencing and advances in data processing technologies to examine all of the differences between a drug-resistant cell and a normal cell and pinpoint the change most likely to cause resistance, which may suggest the drug’s target.

“Knowing a drug’s target can give us insight into why someone might develop resistance to the drug, and can help scientists discover other diseases that the drug may treat,” says Sarah Wacker, a former graduate student in Kapoor’s Laboratory of Chemistry and Cell Biology and first author in the study, which was recently published in Nature Chemical Biology. “It can also be helpful in improving the efficacy of a drug during the drug development process.”

Drug-resistant cells are used as one method for determining where a drug works in the body. If an organism is resistant to a drug, it’s often because a mutation has occurred that affects the drug’s binding site on its target — a protein. In current practice, if researchers suspect which protein is involved, they can determine if it carries a mutation and infer that that protein is the drug’s target. The problem is, there are thousands of possibilities when it comes to which protein has the mutation, so the method relies on trial and error. It makes for a biased experiment, because there are other potential molecular targets that aren’t being tested.

Enter RNA sequencing. It’s a technology that reads a cell’s RNA — the molecules that direct the synthesis of proteins. Using the sequencing technique, Kapoor and colleagues were able to look at all of the potential receptors and narrow down the possibilities, ultimately identifying the one most likely to be the binding site of the drug. This new method is made possible thanks to advances in technology and bioinformatics, a new field that applies computer science to biology — in this case, reading and interpreting the RNA data.

“RNA sequencing is a fairly recent technology and it’s continuously advancing, so it’s becoming cheaper to get more data for less money,” says Wacker.

The scientists looked at two cytotoxic anticancer drugs, one of which was BI 2536, which was recently tested in clinical trials. The drug has a generally-accepted molecular target, the PLK1 protein, and the researchers wanted to test their new method by seeing if it came to the same conclusion. They used RNA sequencing on human cells that resisted the drug and located mutations in those cells’ . The mutations were compared, and one emerged as common among more than one of the resistant cells: PLK1.

Next the researchers created cells with the PLK1 mutation and compared them to cells without it when put in the presence of the anti-cancer drug. As they suspected, only the cells with the mutation were drug-resistant, suggesting that the PLK1 protein is the major physiological target of BI 2536.

“Our method is an improvement over other target identification strategies because it lets us establish a genetic proof of a target in human cells in an unbiased manner,” says Wacker.

In future research, the Kapoor laboratory will examine a for which no target site is established, testing the strength of their method with complete objectivity.

Explore further: Researchers discover potential new mechanisms of drug resistance in Toxoplasma

More information: Nature Chemical Biology 8: 235–237 (February 12, 2012), Using transcriptome sequencing to identify mechanisms of drug action and resistance, Sarah A. Wacker, et al.

Related Stories

Researchers discover potential new mechanisms of drug resistance in Toxoplasma

June 21, 2011
Scientists have for years been puzzled by why drugs are sometimes effective in treating parasitic diseases, while other times they have little or no effect.

Scientists unravel cancer drug's secret to resistance

March 19, 2012
Drug resistance is a serious problem for cancer patients—over time, a therapy that was once providing some benefit simply stops working. Scientists at Sanford-Burnham Medical Research Institute (Sanford-Burnham) recently ...

Research team uncovers mechanism behind drugs that cause altered immunity

May 24, 2012
(Medical Xpress) -- An Australian research team has opened the door to understanding why certain drugs cause a so called altered immunity response when offered as treatment for certain specific ailments. In their paper published ...

New study helps predict which lung cancer drugs are most likely to work

January 10, 2012
(Medical Xpress) -- Researchers at Johns Hopkins have shown that DNA changes in a gene that drives the growth of a form of lung cancer can make the cancer’s cells resistant to cancer drugs. The findings show that some ...

Protein discovery could lead to new HIV drugs

January 27, 2012
(Medical Xpress) -- A team of researchers at the Johns Hopkins Bloomberg School of Public Health recently discovered a new protein that enables HIV to destroy human cells. The finding provides scientists with a critical glimpse ...

Recommended for you

Make way for hemoglobin

August 18, 2017
Every cell in the body, whether skin or muscle or brain, starts out as a generic cell that acquires its unique characteristics after undergoing a process of specialization. Nowhere is this process more dramatic than it is ...

Bio-inspired materials give boost to regenerative medicine

August 18, 2017
What if one day, we could teach our bodies to self-heal like a lizard's tail, and make severe injury or disease no more threatening than a paper cut?

Female mouse embryos actively remove male reproductive systems

August 17, 2017
A protein called COUP-TFII determines whether a mouse embryo develops a male reproductive tract, according to researchers at the National Institutes of Health and their colleagues at Baylor College of Medicine, Houston. The ...

Two-step process leads to cell immortalization and cancer

August 17, 2017
A mutation that helps make cells immortal is critical to the development of a tumor, but new research at the University of California, Berkeley suggests that becoming immortal is a more complicated process than originally ...

New Pathology Atlas maps genes in cancer to accelerate progress in personalized medicine

August 17, 2017
A new Pathology Atlas is launched today with an analysis of all human genes in all major cancers showing the consequence of their corresponding protein levels for overall patient survival. The difference in expression patterns ...

New technique overcomes genetic cause of infertility

August 17, 2017
Scientists have created healthy offspring from genetically infertile male mice, offering a potential new approach to tackling a common genetic cause of human infertility.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.