Modifying scar tissue can potentially improve outcome in chronic stroke

May 21, 2012

New research from the Buck Institute for Research on Aging shows that modifying the scar tissue that develops following a stroke is a promising avenue for future treatments. The need for therapeutics for chronic stroke is compelling. There are 750,000 new strokes per year in the U.S., a leading cause of morbidity and mortality. Aside from physical and occupational therapy, treatments for the six million patients in the U.S. who suffer from chronic stroke are lacking; the vast majority of patients remain in an ongoing state of disability with little hope of return to normal function.

The research, published in the May 21, 2012 online edition of The , builds on ongoing spinal cord repair studies. Working in , scientists in the Greenberg laboratory infused the stroke cavity with either the enzyme chondroitinase ABC (ChABC) or the protein heparan sulfate proteoglycan glypican (glypican). In both cases the treatments improved outcome in the animals – they had less weakness and improved coordination.

Lead scientist, Justin Hill, MD, says both treatments reduced the size of the that had formed following the stroke and essentially "woke up" neurons in the areas surrounding the injury, stimulating the growth of new neurites, which are the terminal extensions of nerves. "We think the scar tissue not only blocks off areas of the brain that are injured during stroke, we also believe the scar tissue secretes factors that impact the function of nearby neurons," said Hill. "Dissolving the scar may spur neurons to re-route connections around the area injured during the stroke." Researchers found that treatment with glypican increased the expression of fibroblast growth factor-2 (FGF-2) near the site of injury and that ChABC increased brain-derived neurotrophic factor (BDNF) expression, both of which have been shown to increase neuron size and survival.

"There are only a handful of laboratories that are focused on treatments for chronic stroke," said Buck faculty David Greenberg, MD, PhD. "Dr. Hill's research is groundbreaking in that it is the first to apply this research on injury to stroke and uncovers some of the underlying mechanisms involved in improved function."

Future research is aimed at discovering possible drug candidates to help patients suffering from chronic .

Explore further: Unexpected cell repairs injured spinal cord

Related Stories

Unexpected cell repairs injured spinal cord

July 7, 2011
Lesions to the brain or spinal cord rarely heal fully, which leads to permanent functional impairment. After injury to the central nervous system (CNS), neurons are lost and largely replaced by a scar often referred to as ...

New understanding of brain chemistry could prevent brain damage after injury

May 15, 2011
A protective molecule has been identified in the brain which, if used artificially, may prevent brain damage from the likes of stroke, head injury and Alzheimer's.

Recommended for you

Make way for hemoglobin

August 18, 2017
Every cell in the body, whether skin or muscle or brain, starts out as a generic cell that acquires its unique characteristics after undergoing a process of specialization. Nowhere is this process more dramatic than it is ...

Two-step process leads to cell immortalization and cancer

August 17, 2017
A mutation that helps make cells immortal is critical to the development of a tumor, but new research at the University of California, Berkeley suggests that becoming immortal is a more complicated process than originally ...

Female mouse embryos actively remove male reproductive systems

August 17, 2017
A protein called COUP-TFII determines whether a mouse embryo develops a male reproductive tract, according to researchers at the National Institutes of Health and their colleagues at Baylor College of Medicine, Houston. The ...

New Pathology Atlas maps genes in cancer to accelerate progress in personalized medicine

August 17, 2017
A new Pathology Atlas is launched today with an analysis of all human genes in all major cancers showing the consequence of their corresponding protein levels for overall patient survival. The difference in expression patterns ...

New technique overcomes genetic cause of infertility

August 17, 2017
Scientists have created healthy offspring from genetically infertile male mice, offering a potential new approach to tackling a common genetic cause of human infertility.

Inhibiting a protein found to reduce progression of Alzheimer's and ALS in mice

August 17, 2017
(Medical Xpress)—A team of researchers with Genetech Inc. and universities in Hamburg and San Francisco has found that inhibiting the creation of a protein leads to a reduction in the progression of Alzheimer's disease ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.