Modifying scar tissue can potentially improve outcome in chronic stroke

May 21, 2012, Buck Institute for Age Research

New research from the Buck Institute for Research on Aging shows that modifying the scar tissue that develops following a stroke is a promising avenue for future treatments. The need for therapeutics for chronic stroke is compelling. There are 750,000 new strokes per year in the U.S., a leading cause of morbidity and mortality. Aside from physical and occupational therapy, treatments for the six million patients in the U.S. who suffer from chronic stroke are lacking; the vast majority of patients remain in an ongoing state of disability with little hope of return to normal function.

The research, published in the May 21, 2012 online edition of The , builds on ongoing spinal cord repair studies. Working in , scientists in the Greenberg laboratory infused the stroke cavity with either the enzyme chondroitinase ABC (ChABC) or the protein heparan sulfate proteoglycan glypican (glypican). In both cases the treatments improved outcome in the animals – they had less weakness and improved coordination.

Lead scientist, Justin Hill, MD, says both treatments reduced the size of the that had formed following the stroke and essentially "woke up" neurons in the areas surrounding the injury, stimulating the growth of new neurites, which are the terminal extensions of nerves. "We think the scar tissue not only blocks off areas of the brain that are injured during stroke, we also believe the scar tissue secretes factors that impact the function of nearby neurons," said Hill. "Dissolving the scar may spur neurons to re-route connections around the area injured during the stroke." Researchers found that treatment with glypican increased the expression of fibroblast growth factor-2 (FGF-2) near the site of injury and that ChABC increased brain-derived neurotrophic factor (BDNF) expression, both of which have been shown to increase neuron size and survival.

"There are only a handful of laboratories that are focused on treatments for chronic stroke," said Buck faculty David Greenberg, MD, PhD. "Dr. Hill's research is groundbreaking in that it is the first to apply this research on injury to stroke and uncovers some of the underlying mechanisms involved in improved function."

Future research is aimed at discovering possible drug candidates to help patients suffering from chronic .

Explore further: Unexpected cell repairs injured spinal cord

Related Stories

Unexpected cell repairs injured spinal cord

July 7, 2011
Lesions to the brain or spinal cord rarely heal fully, which leads to permanent functional impairment. After injury to the central nervous system (CNS), neurons are lost and largely replaced by a scar often referred to as ...

New understanding of brain chemistry could prevent brain damage after injury

May 15, 2011
A protective molecule has been identified in the brain which, if used artificially, may prevent brain damage from the likes of stroke, head injury and Alzheimer's.

Recommended for you

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

Scientists unleash power of genetic data to identify disease risk

January 16, 2018
Massive banks of genetic information are being harnessed to shed new light on modifiable health risks that underlie common diseases.

Blood-vessel-on-a-chip provides insight into new anti-inflammatory drug candidate

January 15, 2018
One of the most important and fraught processes in the human body is inflammation. Inflammatory responses to injury or disease are crucial for recruiting the immune system to help the body heal, but inflammation can also ...

Molecule produced by fat cells reduces obesity and diabetes in mice

January 15, 2018
UC San Francisco researchers have discovered a new biological pathway in fat cells that could explain why some people with obesity are at high risk for metabolic diseases such as type 2 diabetes. The new findings—demonstrated ...

Obese fat becomes inflamed and scarred, which may make weight loss harder

January 12, 2018
The fat of obese people becomes distressed, scarred and inflamed, which can make weight loss more difficult, research at the University of Exeter has found.

Optimized human peptide found to be an effective antibacterial agent

January 11, 2018
A team of researchers in the Netherlands has developed an effective antibacterial ointment based on an optimized human peptide. In their paper published in the journal Science Translational Medicine, the group describes developing ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.