Scientists find differences in naked mole rat's protein disposers

May 11, 2012
The naked mole rat is one animal model of aging under study at the Barshop Institute for Longevity and Aging Studies. The institute is at the University of Texas Health Science Center San Antonio. Credit: Barshop Institute/UT Health Science Center San Antonio

The naked mole rat, a curiously strange, hairless rodent, lives many years longer than any other mouse or rat. Scientists at The University of Texas Health Science Center San Antonio's Barshop Institute of Longevity and Aging Studies continue to explore this mystery.

On May 2 a Barshop Institute team reported that the naked mole rat's cellular machines for protein disposal — called proteasome assemblies — differ in composition from those of other short-lived rodents. The study is in the journal PLoS ONE.

This is the first report of the molecular mechanisms that underlie the naked mole-rat's superior ability to maintain protein integrity. "More effective removal of damaged proteins within the cell would enable the animal to be able to maintain good function and is likely to contribute to its excellent maintenance of good health well into its third decade of life," said Rochelle Buffenstein, Ph.D., of the Barshop Institute. Dr. Buffenstein is a professor of physiology and cellular and structural biology in the School of Medicine at the UT Health Science Center.

Protein integrity

Dr. Buffenstein and her research team in 2009 reported that the naked mole-rat maintains exceptional protein integrity throughout its long and healthy life. In the new study, the team found a greater number of proteasomes and higher protein-disposal activity in liver cells.

The Barshop Institute scientists, including lead author Karl Rodriguez, Ph.D., postdoctoral fellow, and Yael Edrey, graduate student, also found large numbers of immunoproteasomes in the liver cells — a bit of a surprise because these disposers, which remove antigens after presentation in the immune system, are more commonly found in the spleen and thymus.

"Given the high levels of oxidative damage routinely seen in liver tissue of naked mole-rats, it is likely that, in the liver, these immunoproteasomes may play a critical role in the processing of oxidatively damaged proteins," Dr. Buffenstein said.

Oxidative stress

Oxygen is a reactive molecule, rusting unsealed metals and darkening fruit. In the body over time, it is thought to cause an accumulation of damage leading to functional decline, diseases and aging. This is called the oxidative stress theory of aging.

Naked mole-rats, which live underground in the wild, exhibit high levels of oxidative stress even at a young age, yet do not show many signs of age-related decline until very late in life.

"The composition of proteasomes and the presence of immunoproteasomes in the liver are key pieces of the jigsaw puzzle evaluating how naked mole-rats preserve health span well into their third decade of life," Dr. Buffenstein said.

Explore further: Long-lived rodents have high levels of brain-protecting factor

Related Stories

Long-lived rodents have high levels of brain-protecting factor

May 10, 2012
The typical naked mole rat lives 25 to 30 years, during which it shows little decline in activity, bone health, reproductive capacity and cognitive ability. What is the secret to this East African rodent's long, healthy life?

Scientists identify genes that may signal long life in naked mole-rats

November 3, 2011
Scientists at the University of Liverpool have identified high levels of a number of genes in the naked mole-rat that may suggest why they live longer than other rodents and demonstrate resistance to age-related diseases.

Recommended for you

Make way for hemoglobin

August 18, 2017
Every cell in the body, whether skin or muscle or brain, starts out as a generic cell that acquires its unique characteristics after undergoing a process of specialization. Nowhere is this process more dramatic than it is ...

Bio-inspired materials give boost to regenerative medicine

August 18, 2017
What if one day, we could teach our bodies to self-heal like a lizard's tail, and make severe injury or disease no more threatening than a paper cut?

Female mouse embryos actively remove male reproductive systems

August 17, 2017
A protein called COUP-TFII determines whether a mouse embryo develops a male reproductive tract, according to researchers at the National Institutes of Health and their colleagues at Baylor College of Medicine, Houston. The ...

Two-step process leads to cell immortalization and cancer

August 17, 2017
A mutation that helps make cells immortal is critical to the development of a tumor, but new research at the University of California, Berkeley suggests that becoming immortal is a more complicated process than originally ...

Are stem cells the link between bacteria and cancer?

August 17, 2017
Gastric carcinoma is one of the most common causes of cancer-related deaths, primarily because most patients present at an advanced stage of the disease. The main cause of this cancer is the bacterium Helicobacter pylori, ...

New Pathology Atlas maps genes in cancer to accelerate progress in personalized medicine

August 17, 2017
A new Pathology Atlas is launched today with an analysis of all human genes in all major cancers showing the consequence of their corresponding protein levels for overall patient survival. The difference in expression patterns ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.