Scientists study serious immune malfunction

May 17, 2012

Defects in the gene that encodes the XIAP protein result in a serious immune malfunction. Scientists used biochemical analyses to map the protein's ability to activate vital components of the immune system. Their results have recently been published in Molecular Cell, a journal of international scientific repute.

Researchers at The Foundation Center for Research at the University of Copenhagen have mapped how the XIAP protein activates a vital component of the system, specifically the component that fights bacterial infections in the gastro-intestinal system:

"Our results are an important step on the way to understanding the very serious – but fortunately rare – genetic immune disorder called X-linked lymphoproliferative syndrome type 2 (XLP2), which affects male children," says Associate Professor Mads Gyrd-Hansen from the The Novo Nordisk Foundation Center for Protein Research, and explains more about the disease:

"The gastro-intestinal system can be viewed as a long tube running through the body, absorbing nutrients and water. The contact surface between the intestinal system and the rest of the body is protected by an efficient barrier that confines the bacteria to the intestine. This barrier is not intact in XLP2 patients, who thus lack the necessary bulwark, so to say, between bacteria and body."

The new study published in Molecular Cell shows that genetic mutations found in patients with XLP2 specifically destroy XIAP's ability to attach the signalling protein ubiquitin to other proteins. The attachment process is vital for activating the and therefore for survival.

Important knowledge for leukaemia research

While the results from the study published in are first and foremost relevant for XLP2 patients, cancer researchers can also benefit from the new discoveries:

"Several pharmaceutical companies have developed drugs to act on IAP proteins, including XIAP, as part of cancer treatment. Several of the drugs are currently being tested in clinical trials for their efficacy in treatment of leukaemia and other forms of cancer. It is therefore essential to know precisely which biological processes in the organism the treatment can potentially affect," continues Mads Gyrd-Hansen.

Mads Gyrd-Hansen and his colleagues at The Novo Nordisk Foundation Center for have been collaborating for a good 18 months together with research groups in Germany, the UK and Australia, and the competencies of the individual groups have made it possible to rapidly achieve high-quality results quickly:

"International collaboration has made it possible – in a short time – to describe detailed molecular processes, to use the descriptions to create mouse models for further tests and thereafter to link the results of these tests to genetic mutations identified in patients."

Explore further: Stem cell treatment to prevent leukemia returning is a step closer, say scientists

Related Stories

Stem cell treatment to prevent leukemia returning is a step closer, say scientists

June 2, 2011
Researchers at King's College London have identified a way of eliminating leukaemic stem cells, which could lead to new treatments that may enable complete remission for leukaemia patients. An early study in mice has shown ...

Recommended for you

Gene immunotherapy protects against multiple sclerosis in mice

September 21, 2017
A potent and long-lasting gene immunotherapy approach prevents and reverses symptoms of multiple sclerosis in mice, according to a study published September 21st in the journal Molecular Therapy. Multiple sclerosis is an ...

New academic study reveals true extent of the link between hard water and eczema

September 21, 2017
Hard water damages our protective skin barrier and could contribute to the development of eczema, a new study has shown.

Exposure to pet and pest allergens during infancy linked to reduced asthma risk

September 19, 2017
Children exposed to high indoor levels of pet or pest allergens during infancy have a lower risk of developing asthma by 7 years of age, new research supported by the National Institutes of Health reveals. The findings, published ...

Cholesterol-like molecules switch off the engine in cancer-targeting 'Natural Killer' cells

September 18, 2017
Scientists have just discovered how the engine that powers cancer-killing cells functions. Crucially, their research also highlights how that engine is fuelled and that cholesterol-like molecules, called oxysterols, act as ...

MicroRNA helps cancer evade immune system

September 18, 2017
The immune system automatically destroys dysfunctional cells such as cancer cells, but cancerous tumors often survive nonetheless. A new study by Salk scientists shows one method by which fast-growing tumors evade anti-tumor ...

'Exciting' discovery on path to develop new type of vaccine to treat global viruses

September 15, 2017
Scientists at the University of Southampton have made a significant discovery in efforts to develop a vaccine against Zika, dengue and Hepatitis C viruses that affect millions of people around the world.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.