Scientists study serious immune malfunction

May 17, 2012

Defects in the gene that encodes the XIAP protein result in a serious immune malfunction. Scientists used biochemical analyses to map the protein's ability to activate vital components of the immune system. Their results have recently been published in Molecular Cell, a journal of international scientific repute.

Researchers at The Foundation Center for Research at the University of Copenhagen have mapped how the XIAP protein activates a vital component of the system, specifically the component that fights bacterial infections in the gastro-intestinal system:

"Our results are an important step on the way to understanding the very serious – but fortunately rare – genetic immune disorder called X-linked lymphoproliferative syndrome type 2 (XLP2), which affects male children," says Associate Professor Mads Gyrd-Hansen from the The Novo Nordisk Foundation Center for Protein Research, and explains more about the disease:

"The gastro-intestinal system can be viewed as a long tube running through the body, absorbing nutrients and water. The contact surface between the intestinal system and the rest of the body is protected by an efficient barrier that confines the bacteria to the intestine. This barrier is not intact in XLP2 patients, who thus lack the necessary bulwark, so to say, between bacteria and body."

The new study published in Molecular Cell shows that genetic mutations found in patients with XLP2 specifically destroy XIAP's ability to attach the signalling protein ubiquitin to other proteins. The attachment process is vital for activating the and therefore for survival.

Important knowledge for leukaemia research

While the results from the study published in are first and foremost relevant for XLP2 patients, cancer researchers can also benefit from the new discoveries:

"Several pharmaceutical companies have developed drugs to act on IAP proteins, including XIAP, as part of cancer treatment. Several of the drugs are currently being tested in clinical trials for their efficacy in treatment of leukaemia and other forms of cancer. It is therefore essential to know precisely which biological processes in the organism the treatment can potentially affect," continues Mads Gyrd-Hansen.

Mads Gyrd-Hansen and his colleagues at The Novo Nordisk Foundation Center for have been collaborating for a good 18 months together with research groups in Germany, the UK and Australia, and the competencies of the individual groups have made it possible to rapidly achieve high-quality results quickly:

"International collaboration has made it possible – in a short time – to describe detailed molecular processes, to use the descriptions to create mouse models for further tests and thereafter to link the results of these tests to genetic mutations identified in patients."

Explore further: Stem cell treatment to prevent leukemia returning is a step closer, say scientists

Related Stories

Stem cell treatment to prevent leukemia returning is a step closer, say scientists

June 2, 2011
Researchers at King's College London have identified a way of eliminating leukaemic stem cells, which could lead to new treatments that may enable complete remission for leukaemia patients. An early study in mice has shown ...

Recommended for you

Australian researchers in peanut allergy breakthrough

August 17, 2017
Australian researchers have reported a major breakthrough in the relief of deadly peanut allergy with the discovery of a long-lasting treatment they say offers hope that a cure will soon be possible.

Genetic variants found to play key role in human immune system

August 16, 2017
It is widely recognized that people respond differently to infections. This can partially be explained by genetics, shows a new study published today in Nature Communications by an international collaboration of researchers ...

Study identifies a new way to prevent a deadly fungal infection spreading to the brain

August 16, 2017
Research led by the University of Birmingham has discovered a way to stop a deadly fungus from 'hijacking' the body's immune system and spreading to the brain.

Biophysics explains how immune cells kill bacteria

August 16, 2017
(Tokyo, August 16) A new data analysis technique, moving subtrajectory analysis, designed by researchers at Tokyo Institute of Technology, defines the dynamics and kinetics of key molecules in the immune response to an infection. ...

How a nutrient, glutamine, can control gene programs in cells

August 15, 2017
The 200 different types of cells in the body all start with the same DNA genome. To differentiate into families of bone cells, muscle cells, blood cells, neurons and the rest, differing gene programs have to be turned on ...

Scientists identify gene that controls immune response to chronic viral infections

August 15, 2017
For nearly 20 years, Tatyana Golovkina, PhD, a microbiologist, geneticist and immunologist at the University of Chicago, has been working on a particularly thorny problem: Why are some people and animals able to fend off ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.