New technique could identify drugs that help fight broad range of viruses

May 5, 2012

Results of a new study demonstrate the feasibility of a novel strategy in drug discovery: screening large numbers of existing drugs — often already approved for other uses — to see which ones activate genes that boost natural immunity.

Using an automated, high-volume screening technique, researchers at Washington University School of Medicine in St. Louis have identified a cancer that enhances an important natural response to viral infection in human cells.

"Over many years of research, we have developed a good understanding of the human body's own mechanisms to fight viruses," says the study's first author Dhara Patel, PhD, a postdoctoral research scholar at Washington University. "Instead of targeting the virus itself, which most current antiviral drugs do, we have designed a strategy to look for chemical compounds that will enhance this innate antiviral system."

The results of the study, led by Michael J. Holtzman, MD, the Selma and Herman Seldin Professor of Medicine, appear May 4 in PLoS ONE.

Of the 2,240 compounds the researchers tested, 64 showed increased activity in the cells' interferon signaling pathway, an important player in the body's response to viruses. The 64 compounds included many different classes of drugs treating conditions as diverse as depression, high blood pressure and ulcers. But the one that stood out is idarubicin, a cancer drug commonly prescribed to treat leukemia, lymphoma and breast cancer. Even at low doses, idarubicin significantly ramps up the interferon signaling system.

In treating cancer, idarubicin stops cells from dividing by blocking a protein that unwinds DNA. As long as DNA remains tightly packed, it can't be copied. And if DNA can't be copied, a cell can't divide. Interestingly, though, the researchers showed that idarubicin's antiviral effects are totally unrelated to what makes it a good cancer drug.

"We tested other that work the same way as idarubicin but have very different structures," Patel says. "Although they act the same way that idarubicin does in cancer cells, they had no effect on the interferon system."

Like many cancer drugs, idarubicin has toxic side effects, so it is unlikely to ever be prescribed for patients fighting viral infections. But, its identification demonstrates that the new strategy works.

"While idarubicin is not something you would give to a patient who has the flu, we are continuing to screen more drugs," Patel says. "We're starting to find compounds from different drug classes that are not so toxic and that have similar properties in enhancing interferon signaling. We're still validating them, but we're very excited about what we're finding."

Traditionally, techniques for drug discovery involve trying to enhance or inhibit a very specific interaction. To treat a particular disease, scientists might try to disable a harmful protein, or replace a missing one, for example. But such approaches assume that altering a specific interaction of interest will result in the desired effect.

"I think our technique accepts the fact that we don't understand everything that's going on in the cell," Patel says. "Instead of looking at one particular interaction, we measure the downstream effects."

She compares it to driving a car and trying to make it go faster.

"Traditionally, we would pick a specific part — a part of the car that we think is responsible for speed — and then test compounds that alter the part in a way that we think will make the car go faster," she says. "With our approach, we don't assume we know what is responsible for speed. Instead, we take entire cars, treat them with many different compounds, and just see which ones go faster."

Patel says this screening technique is unusual because it can identify drugs that enhance the body's own immune response to a broad range of viruses, unlike a vaccine, which only protects against a specific virus.

The method has also shed light on how some compounds with known antiviral properties actually fight . In addition to cancer drugs, antidepressants and blood pressure medications, the initial 64 drugs they identified with increased interferon activity included some known antiviral drugs.

"We already knew some of these compounds had antiviral properties, we just didn't know why," Patel says. "Now we're starting to find out how they actually work."

Explore further: Big picture of how interferon-induced genes launch antiviral defenses revealed

More information: PLoS ONE. May 4, 2012. doi: 10.1371/journal.pone.0036594

Related Stories

Big picture of how interferon-induced genes launch antiviral defenses revealed

April 10, 2011
When viruses attack, one molecule more than any other fights back. Interferon triggers the activation of more than 350 genes, and despite the obvious connection, the vast majority have never been tested for antiviral properties. ...

Study of patients infected with both HIV and hepatitis shows how the drug interferon works to suppress virus

February 29, 2012
A drug once taken by people with HIV/AIDS but long ago shelved after newer, modern antiretroviral therapies became available has now shed light on how the human body uses its natural immunity to fight the virus—work ...

New drug shrinks cancer in animals, study shows

April 6, 2011
A study led by researchers at the University of Michigan Comprehensive Cancer Center showed in animal studies that new cancer drug compounds they developed shrank tumors, with few side effects.

New drug screening identifies chemical agents with potent anti-cancer activity

January 5, 2012
Drugs already approved for clinical use across a variety of therapeutic categories can be screened to identify effective agents for thyroid cancer according to a recent study accepted for publication in the Endocrine Society's ...

Recommended for you

Study provides insight into link between two rare tumor syndromes

August 22, 2017
UCLA researchers have discovered that timing is everything when it comes to preventing a specific gene mutation in mice from developing rare and fast-growing cancerous tumors, which also affects young children. This mutation ...

Retaining one normal BRCA gene in breast, ovarian cancers influences patient survival

August 22, 2017
Determining which cancer patients are likely to be resistant to initial treatment is a major research effort of oncologists and laboratory scientists. Now, ascertaining who might fall into that category may become a little ...

Study identifies miR122 target sites in liver cancer and links a gene to patient survival

August 22, 2017
A new study of a molecule that regulates liver-cell metabolism and suppresses liver-cancer development shows that the molecule interacts with thousands of genes in liver cells, and that when levels of the molecule go down, ...

Zebrafish larvae could be used as 'avatars' to optimize personalized treatment of cancer

August 21, 2017
Portuguese scientists have for the first time shown that the larvae of a tiny fish could one day become the preferred model for predicting, in advance, the response of human malignant tumors to the various therapeutic drugs ...

Scientists discover vitamin C regulates stem cell function, curbs leukemia development

August 21, 2017
Not much is known about stem cell metabolism, but a new study from the Children's Medical Center Research Institute at UT Southwestern (CRI) has found that stem cells take up unusually high levels of vitamin C, which then ...

Searching for the 'signature' causes of BRCAness in breast cancer

August 21, 2017
Breast cancer cells with defects in the DNA damage repair-genes BRCA1 and BRCA2 have a mutational signature (a pattern of base swaps—e.g., Ts for Gs, Cs for As—throughout a genome) known in cancer genomics as "Signature ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.