Blood-brain barrier building blocks forged from human stem cells

June 24, 2012

The blood-brain barrier -- the filter that governs what can and cannot come into contact with the mammalian brain -- is a marvel of nature. It effectively separates circulating blood from the fluid that bathes the brain, and it keeps out bacteria, viruses and other agents that could damage it.

But the barrier can be disrupted by disease, stroke and multiple sclerosis, for example, and also is a big challenge for medicine, as it can be difficult or impossible to get therapeutic molecules through the barrier to treat neurological disorders.

Now, however, the blood-brain barrier may be poised to give up some of its secrets as researchers at the University of Wisconsin-Madison have created in the laboratory dish the that make up the brain's protective barrier. Writing in the June 24, 2012 edition of the journal Nature Biotechnology, the Wisconsin researchers describe transforming stem cells into endothelial cells with blood-brain barrier qualities.

Access to the specialized cells "has the potential to streamline drug discovery for neurological disease," says Eric Shusta, a UW-Madison professor of chemical and biological engineering and one of the senior authors of the new study. "You can look at tens of thousands of drug candidates and just ask the question if they have a chance to get into the brain. There is broad interest from the pharmaceutical industry."

The blood-brain barrier depends on the unique qualities of endothelial cells, the cells that make up the lining of blood vessels. In many parts of the body, the endothelial cells that line capillaries are spaced so that substances can pass through. But in the capillaries that lead to the brain, the endothelial cells nestle in tight formation, creating a semi-permeable barrier that allows some substances -- and metabolites -- access to the brain while keeping others -- pathogens and harmful chemicals -- locked out.

The cells described in the new Wisconsin study, which was led by Ethan S. Lippmann, now a postdoctoral fellow at the Wisconsin Institute for Discovery, and Samira M. Azarin, now a postdoctoral fellow at Northwestern University, exhibit both the active and passive regulatory qualities of those cells that make up the capillaries of the intact brain.

The research team coaxed both embryonic and induced pluripotent stem cells to form the endothelial cells of the blood-brain barrier. The use of induced cells, which can come from patients with specific neurological conditions, may be especially important for modeling disorders that compromise the blood-brain barrier. What's more, because the cells can be mass produced, they could be used to devise high-throughput screens for molecules that may have therapeutic value for neurological conditions or to identify existing drugs that may have neurotoxic qualities.

"The nice thing about deriving endothelial cells from induced pluripotent stem cells is that you can make disease-specific models of brain tissue that incorporate the blood-brain barrier," explains Sean Palecek, a UW-Madison professor of chemical and biological engineering and a senior author of the new report. "The cells you create will carry the genetic information of the condition you want to study."

The generation of the specialized blood-brain barrier endothelial cells, the Wisconsin researchers note, has never been done with stem cells. In addition to the potential applications to screen drugs and model pathologies of the blood-brain barrier, they may also provide a novel window for developmental biologists who are interested in how the barrier comes together and co-develops with the brain.

"Neurons develop at the same time as the endothelial cells," Shusta says, noting that, in development, the cells secrete chemical cues that help determine organ specificity.

"We don't know what all those factors are," Lippmann says. "But with this model, we can go back and look." Identifying all of the molecular factors at play as blank slate differentiate to become specialized could one day have clinical significance to treat stroke or tamp down the ability of brain tumors to recruit blood vessels needed to sustain cancer.

Explore further: Scientists show brain vulnerable to Hepatitis C virus

Related Stories

Scientists show brain vulnerable to Hepatitis C virus

January 18, 2012
(Medical Xpress) -- Scientists at the University of Birmingham have demonstrated for the first time that human brain cells can become infected with the Hepatitis C virus (HCV), it is reported today.

Breaching the blood-brain barrier: Researchers may have solved 100-year-old puzzle

September 13, 2011
Cornell University researchers may have solved a 100-year puzzle: How to safely open and close the blood-brain barrier so that therapies to treat Alzheimer's disease, multiple sclerosis and cancers of the central nervous ...

Recommended for you

Large variety of microbial communities found to live along female reproductive tract

October 18, 2017
(Medical Xpress)—A large team of researchers from China (and one each from Norway and Denmark) has found that the female reproductive tract is host to a far richer microbial community than has been thought. In their paper ...

Inflammation trains the skin to heal faster

October 18, 2017
Scars may fade, but the skin remembers. New research from The Rockefeller University reveals that wounds or other harmful, inflammation-provoking experiences impart long-lasting memories to stem cells residing in the skin, ...

Study of what makes cells resistant to radiation could improve cancer treatments

October 18, 2017
A Johns Hopkins University biologist is part of a research team that has demonstrated a way to size up a cell's resistance to radiation, a step that could eventually help improve cancer treatments.

New approach helps rodents with spinal cord injury breathe on their own

October 17, 2017
One of the most severe consequences of spinal cord injury in the neck is losing the ability to control the diaphragm and breathe on one's own. Now, investigators show for the first time in laboratory models that two different ...

Pair of discoveries illuminate new paths to flu and anthrax treatments

October 17, 2017
Two recent studies led by biologists at the University of California San Diego have set the research groundwork for new avenues to treat influenza and anthrax poisoning.

New method to measure how drugs interact

October 17, 2017
Cancer, HIV and tuberculosis are among the many serious diseases that are frequently treated with combinations of three or more drugs, over months or even years. Developing the most effective therapies for such diseases requires ...

3 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

mjesfahani
not rated yet Jun 25, 2012
It was said that MS (Multiple Sclerosis) is due to tearing out of BBB (Brain Blood Barier) but I don't think So. I studied on this web site that it is due to the gland that pours
mjesfahani
not rated yet Jun 25, 2012
in the blood and it goes on the nerves and attack happens. It is not correct. That doctor said it is due to that gland.
mjesfahani
not rated yet Jun 25, 2012
The name of the doctor was Rostami I remember. So, hormune pour in the blood and sattle on mylien sheath, attack by T-cells happen.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.