Gene clue to drug resistance in African sleeping sickness

June 19, 2012
Gene clue to drug resistance in African sleeping sickness
African trypanosomes (variant surface glycoprotein, green; red fluorescent protein, red; DNA, blue). Credit: Lucy Glover, London School of Hygiene and Tropical Medicine.

(Medical Xpress) -- Researchers have identified a gene that controls susceptibility to drug treatment in Trypanosoma brucei, the parasite responsible for African sleeping sickness.

Human African trypanosomiasis (HAT), also known as sleeping sickness, is a parasite disease that is transmitted by the tsetse fly and is usually fatal if left untreated. There is currently no vaccine, and is the only .

During the early stages of the disease, pentamidine is typically the only drug available. However, diagnosis is often late and in these cases the arsenic-based drug melarsoprol is often used, despite the fact that the therapy itself kills approximately 5 per cent of patients.

This desperate situation is made worse by the increasing incidence of melarsoprol resistance in up to 30 per cent of patients in some areas. Cross-resistance among the melarsoprol-pentamidine drug classes was reported more than 60 years ago, but understanding of the underlying mechanism remains incomplete.

Earlier this year, research led by a team at the London School of Hygiene and Tropical Medicine identified two parasite genes that are involved in the action of both pentamidine and melarsoprol. Both genes encode channels that can transport water and glycerol in or out of the parasite.

Now, the same team - in collaboration with the University of Glasgow - have shown that trypanosomes lacking just one of the genes, the AQP2 gene, were resistant to both drugs and that this gene alone could explain the previously observed drug resistance. They also found that the same gene was specifically disrupted in a drug-resistant strain generated in the laboratory several years previously. The findings suggest that AQP2 is required to enable the drugs to get into the parasite.

Dr David Horn from the London School of Hygiene and Tropical Medicine explains the importance of the findings: "Disrupting AQP2 is probably akin to turning off a tap, reducing the flow of drugs into the cell.

"One important question now is whether disruption of the AQP2 gene can explain cases of drug resistance in patients. If so, then we can look to develop a test based on this that could help to tackle drug resistance in the field when it arises."

Explore further: Genetic technique brings new hope for better treatments for sleeping sickness

More information: Baker N et al. Aquaglyceroporin 2 controls susceptibility to melarsoprol and pentamidine in African trypanosomes. Proc Natl Acad Sci 2012 (epub ahead of print).

Related Stories

Genetic technique brings new hope for better treatments for sleeping sickness

January 25, 2012
Research led by scientists at the London School of Hygiene & Tropical Medicine has exploited a revolutionary genetic technique to discover how human African Trypanosomiasis (HAT) drugs target the parasite which causes the ...

Major advance in sleeping sickness drug made by Glasgow scientists

September 6, 2011
A new study published in the open-access journal PLoS Neglected Tropical Diseases on September 6th presents a key advance in developing a safer cure for sleeping sickness. Led by Professor Peter Kennedy, researchers at the ...

African sleeping sickness: a tale of two parasites

December 8, 2011
(Medical Xpress) -- The savannahs and rainforests of Africa bring to mind romantic notions of wildlife, adventure and exploration. But beneath this natural beauty lies a deadly, long-neglected disease: trypanosomiasis, otherwise ...

Scientists take a step towards better sleeping sickness treatment

April 25, 2012
(Medical Xpress) -- Scientists at the University of Glasgow have taken a major step forward in the quest to develop new, safer drugs for the treatment of sleeping sickness.

Recommended for you

How hepatitis C hides in the body

October 13, 2017
The Hepatitis C (HCV) virus is a sly enemy to have in one's body. Not only does it manage to make itself invisible to the immune system by breaking down communication between the immune cells, it also builds secret virus ...

Largest study yet of malaria in Africa shows historical rates of infection

October 12, 2017
(Medical Xpress)—A team of researchers with members from the Kenya Medical Research Institute, the University of Oxford and the University of KwaZulu-Natal has conducted the largest-ever study of the history of malaria ...

Promising new target for treatment of psoriasis is safe, study shows

October 11, 2017
A protein known to play a significant role in the development of psoriasis can be prevented from functioning without posing a risk to patients, scientists at King's College London have found.

Norovirus evades immune system by hiding out in rare gut cells

October 11, 2017
Noroviruses are the leading cause of non-bacterial gastroenteritis in the world and are estimated to cause 267 million infections and 20,000 deaths each year. This virus causes severe diarrhea, nausea, and stomach pain.

Research reveals how rabies can induce frenzied behavior

October 11, 2017
Scientists may finally understand how the rabies virus can drastically change its host's behavior to help spread the disease, which kills about 59,000 people annually.

Experimental Ebola vaccines elicit year-long immune response

October 11, 2017
Results from a large randomized, placebo-controlled clinical trial in Liberia show that two candidate Ebola vaccines pose no major safety concerns and can elicit immune responses by one month after initial vaccination that ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.