Genome-wide analysis shows previously undetected abnormalities in parents of affected children

June 24, 2012, European Society of Human Genetics

The use of genome-wide array analysis in parents whose children are suspected of having a genetic disease shows that the parents frequently also have previously undetected genetic abnormalities, a researcher from The Netherlands told the annual conference of the European Society of Human Genetics. Being aware of this is important to parents because it means that their risk of having another affected child is significantly increased.

Dr. Nicole de Leeuw, a clinical laboratory geneticist in the Department of Human Genetics of the Radboud University Nijmegen Medical Centre in Nijmegen, and colleagues performed genome-wide SNP array analysis in 6,500 patients and 1,874 parents. The patients had and/or , and the parents of those in whom an aberration was detected were tested in a similar way to determine whether they had the same aberration as their child. Mosaic aberrations, where both genetically normal and are present in an individual, were not only found in one in every 300 patients, but in one in every 270 parents as well. "These abnormalities occurred more frequently than we had expected", said Dr. de Leeuw. "Armed with this knowledge, we can try to understand not only why, but also how genetic disease arises in individuals, and this can help us to provide better genetic counselling."

Analysis of patients' genomes showed 6.5% de novo (spontaneously arising) genomic imbalances, 9.1% of rare, inherited imbalances, and 0.8% of X-linked abnormalities. Moreover, with the additional data from their SNP array test results, the researchers were able to subsequently find pathogenic mutations in recessive , uniparental disomies (where a single chromosome is doubled leading to two genetically identical ones), and mosaic aneuploidies (an extra or missing chromosome in some of the cells of the body) in about 30 patients.

"In at least seven families, these findings meant that what we had thought of as a spontaneously arising, non-inherited genetic abnormality in a child was in fact already present in some form in the parent", said Dr. de Leeuw. "Furthermore, when we tested in different cell lines – for example, DNA from blood and that from a mouth swab – we often found that results varied. This is because mosaic aberrations can occur in cells in some organs and not in others, and underlines the importance of not just relying on one type of cell line for this kind of genetic diagnosis."

In two cases these tissue-dependent differences changed over time, and the researchers believe that this was due to an attempt by the body to correct and rescue the situation. "Such rescue attempts are best known in cases of trisomy, where there are three instead of two in a cell, or monosomy, where there is only one. In both these cases, the body may try to correct the situation by respectively deleting or adding (doubling) a chromosome. Such rescue mechanisms may be more common than we expected, and by using genome-wide SNP array analysis it will help us to reveal them. For some patients, it would be particularly interesting if we could test multiple samples of these patients over time", said Dr. de Leeuw.

The majority of are not treatable, but in some cases a special diet may reduce the severity of the symptoms ,for example, in phenylketonuria (PKU) or in coeliac disease, in others the same can be obtained by periodic examination of certain organs (for example in Down syndrome or Marfan syndrome). Sometimes hormone treatment will be of benefit to the patient, for example growth hormone treatment in Turner syndrome. For most patients with a genetic disorder, there is no cure, but knowing the genetic cause of their disease may help and improve the care for these patients through knowledge about other patients with the same disease. And if the family is at risk of a genetic disease, couples considering having children can be better informed as to their options, the researchers say.

"By using genome-wide array analysis to look for imbalances in the human genome, we will uncover more and more accurate findings in patients. This will not only increase our knowledge of genetic disorders and the human genome in general, but if we can also collect the clinical features of these patients in a structured and uniform way, the information will become increasingly valuable. Fortunately, this is becoming easier due to advances in tools and software applications, and many professionals in the academic and commercial world have agreed to collaborate in order to substantially increase the genotype/phenotype collection and make these anonymised data publicly available to medical professionals in order to improve patient care worldwide", Dr. de Leeuw concluded.

Explore further: Intellectual disability is frequently caused by non-hereditary genetic problems

Related Stories

Intellectual disability is frequently caused by non-hereditary genetic problems

April 18, 2011
Mutations in a group of genes associated with brain activity frequently cause intellectual disability, according to a study led by scientists affiliated with the University of Montreal and the research centre at the Centre ...

De novo mutations provide new genetic clues for schizophrenia

July 10, 2011
De novo mutations – genetic errors that are present in patients but not in their parents – are more frequent in schizophrenic patients than in normal individuals, according to an international group of scientists ...

Sequencing of 500 genomes brings personalized medicine closer

August 4, 2011
The genomes of 500 people with a range of diseases – including cancer, immunological disorders, and rare inherited diseases – are to be sequenced in full detail thanks to a new collaboration between the ...

Sequencing works in clinical setting to help -- finally -- get a diagnosis

May 8, 2012
Advanced high-speed gene-sequencing has been used in the clinical setting to find diagnoses for seven children out of a dozen who were experiencing developmental delays and congenital abnormalities for mysterious reasons.

Recommended for you

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

Two new breast cancer genes emerge from Lynch syndrome gene study

January 18, 2018
Researchers at Columbia University Irving Medical Center and NewYork-Presbyterian have identified two new breast cancer genes. Having one of the genes—MSH6 and PMS2—approximately doubles a woman's risk of developing breast ...

Can mice really mirror humans when it comes to cancer?

January 18, 2018
A new Michigan State University study is helping to answer a pressing question among scientists of just how close mice are to people when it comes to researching cancer.

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.