GMCSF treatment associated with improved cognition in cancer patients

June 22, 2012

Growth factors shown to cure Alzheimer's disease in a mouse model and administered to cancer patients as part of their treatment regimen were linked to significant improvements in the patients' cognitive function following stem cell transplantation, a preliminary clinical study reports.

The findings by researchers at the USF Health Byrd Alzheimer's Institute and Moffitt Cancer Center are reported online in & Therapy.

The retrospective study showed that treated with granulocyte macrophage colony stimulating factor (GMCSF) plus granulocyte colony stimulating factor (GCSF) experienced greater improvement in memory and thinking than those treated with GCSF alone.

In the new study, the USF and Moffitt researchers investigated the link between GMCSF and in humans for the first time, said principal investigator Huntington Potter, PhD, professor of molecular medicine at the USF Health Byrd Alzheimer's Institute. While the research looked at changes in cognition related to cancer treatment, it provided the basis for a new randomized controlled trial at the Byrd Alzheimer's Institute testing the safety and effectiveness of GMCSF (the drug sargramostim) in 40 with mild to moderate Alzheimer's disease.

GMCSF and GCSF, routinely administered to patients undergoing transplants to treat blood or bone marrow cancers, have a proven safety track record for this use. These growth, or colony stimulating, factors boost blood-forming stem cells circulating in the patient's own blood before the cells are harvested for autologous hematopoietic cell transplantation (HCT), speed the repopulation of cells depleted by chemotherapy or radiation, and/or fight infection in patients receiving bone marrow or blood stem cells from a donor.

Those involved in cancer research and clinical care are aware that problems with memory and concentration, referred to as "chemo brain," can be a side effect of high-dose chemotherapy, which is part of the regimen accompanying HCT.

Previous University of South Florida (USF) studies by Dr. Potter, Tim Boyd, PhD, and others investigated GMCSF and GCSF separately in mice bred to develop symptoms of Alzheimer's disease. They showed that these both reduce beta amyloid, a substance forming the hallmark plaques in the brain associated with Alzheimer's, and reverse memory impairment, with GMCSF being more effective.

"This preliminary work is an intriguing first step and points to the importance of collaboration between different health disciplines," said lead author Heather Jim, PhD, assistant professor in the Health Outcomes and Behavior Department at Moffitt. "While more research is needed, the study suggests that GMCSF, a drug with a relatively good safety profile, may be able to either prevent or reverse cognitive decline not only in Alzheimer's patients, but cancer patients as well."

The USF-Moffitt study involved 19 cancer patients who received GMCSF and GCSF, and 76 who received GCSF only. No patients received GMCSF only. Most were diagnosed with multiple myeloma or non-Hodgkin's lymphoma and treated with autologous HCT.

Neuropsychological tests of memory, attention and executive function (complex thinking) conducted before patients received GMCSF and/or GCSF for treatment with HCT indicated significant cognitive impairment in all study participants. The same tests six months after HCT showed that group of patients administered GMCSF and GCSF performed significantly better than the group receiving GCSF only – in the area of memory improvement. By 12 months, there were no differences; both groups had improved significantly in memory and executive function.

"The GMCSF was associated with faster cognitive recovery," Potter said.

The finding that GMCSF plus GCSF was associated with initially greater cognitive improvement than GCSF alone may reflect GMCSF's ability to mobilize a broader range of cell types, particularly the recruitment of more immune cells known as microglia that rush to damaged or inflamed areas to get rid of toxic substances, Potter said.

"Although preliminary and retrospective," he added, "the current data indicate that colony stimulating factors, particularly GMCSF, should be further tested as cognition enhancers for a number of different indications, including cancer and neurodegenerative disease."

Explore further: Mystery ingredient in coffee boosts protection against Alzheimer's disease

Related Stories

Mystery ingredient in coffee boosts protection against Alzheimer's disease

June 21, 2011
A yet unidentified component of coffee interacts with the beverage's caffeine, which could be a surprising reason why daily coffee intake protects against Alzheimer's disease. A new Alzheimer's mouse study by researchers ...

Tobacco-derived compound prevents memory loss in Alzheimer's disease mice

April 27, 2011
Cotinine, a compound derived from tobacco, reduced plaques associated with dementia and prevented memory loss in a mouse model of Alzheimer's disease, a study led by researchers at Bay Pines VA Healthcare System and the University ...

Treating high blood pressure, cholesterol, diabetes may lower risk of Alzheimer's disease

April 13, 2011
Treating high blood pressure, high cholesterol, diabetes and other vascular risk factors may help lower the risk of Alzheimer's disease in people who already show signs of declining thinking skills or memory problems. The ...

Stem cell treatment may restore cognitive function in patients with brain cancer

July 13, 2011
Stem cell therapy may restore cognition in patients with brain cancer who experience functional learning and memory loss often associated with radiation treatment, according to a laboratory study published in Cancer Research, ...

Recommended for you

Artificial intelligence predicts dementia before onset of symptoms

August 22, 2017
Imagine if doctors could determine, many years in advance, who is likely to develop dementia. Such prognostic capabilities would give patients and their families time to plan and manage treatment and care. Thanks to artificial ...

Chronic stress induces fatal organ dysfunctions via a new neural circuit

August 22, 2017
Hokkaido University researchers revealed that fatal gut failure in a multiple sclerosis (MS) mouse model under chronic stress is caused by a newly discovered nerve pathway. The findings could provide a new therapeutic strategy ...

Noninvasive eye scan could detect key signs of Alzheimer's years before patients show symptoms

August 17, 2017
Cedars-Sinai neuroscience investigators have found that Alzheimer's disease affects the retina—the back of the eye—similarly to the way it affects the brain. The study also revealed that an investigational, noninvasive ...

Could olfactory loss point to Alzheimer's disease?

August 16, 2017
By the time you start losing your memory, it's almost too late. That's because the damage to your brain associated with Alzheimer's disease (AD) may already have been going on for as long as twenty years. Which is why there ...

New Machine Learning program shows promise for early Alzheimer's diagnosis

August 15, 2017
A new machine learning program developed by researchers at Case Western Reserve University appears to outperform other methods for diagnosing Alzheimer's disease before symptoms begin to interfere with every day living, initial ...

Brain scan study adds to evidence that lower brain serotonin levels are linked to dementia

August 14, 2017
In a study looking at brain scans of people with mild loss of thought and memory ability, Johns Hopkins researchers report evidence of lower levels of the serotonin transporter—a natural brain chemical that regulates mood, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.