Immune system 'circuitry' that kills malaria in mosquitoes identified

June 7, 2012

Researchers at the Johns Hopkins Malaria Research Institute have, for the first time, determined the function of a series proteins within the mosquito that transduce a signal that enables the mosquito to fight off infection from the parasite that causes malaria in humans. Together, these proteins are known as immune deficiency (Imd) pathway signal transducing factors, are analogous to an electrical circuit. As each factor is switched on or off it triggers or inhibits the next, finally leading to the launch of an immune response against the malaria parasite. The study was published June 7 in the journal PLoS Pathogens.

The latest study builds upon earlier work of the research team, in which they found that silencing one gene of this circuit, Caspar, activated Rel2, an Imd pathway transcription factor of the mosquito. The activation of Rel2 turns on the effectors TEP1, APL1 and FBN9 that kill malaria-causing parasites in the mosquito's gut. More significantly, this study discovered the Imd pathway signal transducing factors and effectors that will mediate a successful reduction of parasite infection at their early ookinete stage, as well as in the later oocyst stage when the levels of infection were similar to those found in nature.

"Identifying and understanding how all of the players work is crucial for manipulating the Imd pathway as an invention to control malaria. We now know which genes can be manipulated through genetic engineering to create a malaria resistant mosquito" said George Dimopoulos PhD, professor in the Department of and Immunology at the Johns Hopkins Bloomberg School of Public Health.

To conduct the study, Dimopoulos's team used a method to "knock down" the genes of the Imd pathway. As the components were inactivated, the researchers could observe how the mosquito's resistance to would change.

"Imagine a string of Christmas lights or other circuit that will not work when parts aren't aligned in the right sequence. That is how we are working with the mosquito's immune system," explained Dimopolous. "We manipulate the molecular components of the mosquito's immune system to identify the parts necessary to kill the malaria parasites."

Malaria kills more than 800,000 people worldwide each year. Many are children.

Explore further: Scientists engineer mosquito immune system to fight malaria

More information: "Anopheles Imd pathway factors and effectors in infection intensity-dependent anti-Plasmodium action", PLoS Pathogens.

Related Stories

Scientists engineer mosquito immune system to fight malaria

December 22, 2011
Researchers at the Johns Hopkins Malaria Research Institute have demonstrated that the Anopheles mosquito's innate immune system could be genetically engineered to block the transmission of malaria-causing parasites to humans. ...

Wolbachia bacteria reduce parasite levels and kill the mosquito that spreads malaria

May 19, 2011
Wolbachia are bacteria that infect many insects, including mosquitoes. However, Wolbachia do not naturally infect Anopheles mosquitoes, which are the type that spreads malaria to humans. Researchers at the Johns Hopkins Bloomberg ...

Certain bacteria render mosquitoes resistant to deadly malaria parasite

May 12, 2011
cientists have identified a class of naturally occurring bacteria that can strongly inhibit malaria-causing parasites in Anopheles mosquitoes, a finding that could have implications for efforts to control malaria. The study, ...

Recommended for you

Link between cells associated with aging and bone loss

August 21, 2017
Mayo Clinic researchers have reported a causal link between senescent cells - the cells associated with aging and age-related disease - and bone loss in mice. Targeting these cells led to an increase in bone mass and strength. ...

Are stem cells the link between bacteria and cancer?

August 17, 2017
Gastric carcinoma is one of the most common causes of cancer-related deaths, primarily because most patients present at an advanced stage of the disease. The main cause of this cancer is the bacterium Helicobacter pylori, ...

Two-step process leads to cell immortalization and cancer

August 17, 2017
A mutation that helps make cells immortal is critical to the development of a tumor, but new research at the University of California, Berkeley suggests that becoming immortal is a more complicated process than originally ...

New Pathology Atlas maps genes in cancer to accelerate progress in personalized medicine

August 17, 2017
A new Pathology Atlas is launched today with an analysis of all human genes in all major cancers showing the consequence of their corresponding protein levels for overall patient survival. The difference in expression patterns ...

Female mouse embryos actively remove male reproductive systems

August 17, 2017
A protein called COUP-TFII determines whether a mouse embryo develops a male reproductive tract, according to researchers at the National Institutes of Health and their colleagues at Baylor College of Medicine, Houston. The ...

New technique overcomes genetic cause of infertility

August 17, 2017
Scientists have created healthy offspring from genetically infertile male mice, offering a potential new approach to tackling a common genetic cause of human infertility.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.