How immune system, inflammation may play role in Lou Gehrig's disease

June 5, 2012
In the ALS spinal cord, a patient's own immune cells called macrophages (green) impact neurons (live neurons =red, which are also marked by an asterisk (*), and dead neurons = magenta that are marked by an arrow. Credit: University of California, Los Angeles

In an early study, UCLA researchers found that the immune cells of patients with amyotrophic lateral sclerosis (ALS), or Lou Gehrig's disease, may play a role in damaging the neurons in the spinal cord. ALS is a disease of the nerve cells in the brain and spinal cord that control voluntary muscle movement.

Specifically, the team found that inflammation instigated by the immune system in ALS can trigger macrophages — cells responsible for gobbling up waste products in the brain and body — to also ingest healthy neurons. During the inflammation process, motor neurons, whether healthy or not, are marked for clean-up by the macrophages.

In addition, the team found that a lipid mediator called resolvin D1, which is made in the body from the omega-3 fatty acid DHA, was able to "turn off" the inflammatory response that made the macrophages so dangerous to the neurons. Resolvin D1 blocked the inflammatory proteins being produced by the macrophages, curbing the inflammation process that marked the for clean-up. It inhibited key inflammatory proteins like IL-6 with a potency 1,100 times greater than the parent molecule, DHA. DHA has been shown in studies to be neuroprotective in a number of conditions, including stroke and Alzheimer's disease.

For the study, the team isolated from blood samples taken from both ALS patients and controls and cells from deceased donors.

The study findings on resolvin D1 may offer a new approach to attenuating the inflammation in ALS. Currently, there is no effective way of administering resolvins to patients, so clinical research with resolvin D1 is still several years away. The parent molecule, DHA, is available in stores, although it has not been tested in clinical trials for ALS. Studies with DHA are in progress for Alzheimer's disease, stroke and brain injury and have been mostly positive.

The research appeared in the May 30 edition of the peer-reviewed American Journal of Neurodegeneration.

Explore further: Potential new drug target in Lou Gehrig's disease

Related Stories

Potential new drug target in Lou Gehrig's disease

November 14, 2011
Two proteins conspire to promote a lethal neurological disease, according to a study published online this week in the Journal of Experimental Medicine.

Recommended for you

Antibody protects against Zika and dengue, mouse study shows

September 25, 2017
Brazil and other areas hardest hit by the Zika virus - which can cause babies to be born with abnormally small heads - are also home to dengue virus, which is spread by the same mosquito species.

Gene immunotherapy protects against multiple sclerosis in mice

September 21, 2017
A potent and long-lasting gene immunotherapy approach prevents and reverses symptoms of multiple sclerosis in mice, according to a study published September 21st in the journal Molecular Therapy. Multiple sclerosis is an ...

New academic study reveals true extent of the link between hard water and eczema

September 21, 2017
Hard water damages our protective skin barrier and could contribute to the development of eczema, a new study has shown.

Exposure to pet and pest allergens during infancy linked to reduced asthma risk

September 19, 2017
Children exposed to high indoor levels of pet or pest allergens during infancy have a lower risk of developing asthma by 7 years of age, new research supported by the National Institutes of Health reveals. The findings, published ...

Cholesterol-like molecules switch off the engine in cancer-targeting 'Natural Killer' cells

September 18, 2017
Scientists have just discovered how the engine that powers cancer-killing cells functions. Crucially, their research also highlights how that engine is fuelled and that cholesterol-like molecules, called oxysterols, act as ...

MicroRNA helps cancer evade immune system

September 18, 2017
The immune system automatically destroys dysfunctional cells such as cancer cells, but cancerous tumors often survive nonetheless. A new study by Salk scientists shows one method by which fast-growing tumors evade anti-tumor ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.