How immune system, inflammation may play role in Lou Gehrig's disease

June 5, 2012
In the ALS spinal cord, a patient's own immune cells called macrophages (green) impact neurons (live neurons =red, which are also marked by an asterisk (*), and dead neurons = magenta that are marked by an arrow. Credit: University of California, Los Angeles

In an early study, UCLA researchers found that the immune cells of patients with amyotrophic lateral sclerosis (ALS), or Lou Gehrig's disease, may play a role in damaging the neurons in the spinal cord. ALS is a disease of the nerve cells in the brain and spinal cord that control voluntary muscle movement.

Specifically, the team found that inflammation instigated by the immune system in ALS can trigger macrophages — cells responsible for gobbling up waste products in the brain and body — to also ingest healthy neurons. During the inflammation process, motor neurons, whether healthy or not, are marked for clean-up by the macrophages.

In addition, the team found that a lipid mediator called resolvin D1, which is made in the body from the omega-3 fatty acid DHA, was able to "turn off" the inflammatory response that made the macrophages so dangerous to the neurons. Resolvin D1 blocked the inflammatory proteins being produced by the macrophages, curbing the inflammation process that marked the for clean-up. It inhibited key inflammatory proteins like IL-6 with a potency 1,100 times greater than the parent molecule, DHA. DHA has been shown in studies to be neuroprotective in a number of conditions, including stroke and Alzheimer's disease.

For the study, the team isolated from blood samples taken from both ALS patients and controls and cells from deceased donors.

The study findings on resolvin D1 may offer a new approach to attenuating the inflammation in ALS. Currently, there is no effective way of administering resolvins to patients, so clinical research with resolvin D1 is still several years away. The parent molecule, DHA, is available in stores, although it has not been tested in clinical trials for ALS. Studies with DHA are in progress for Alzheimer's disease, stroke and brain injury and have been mostly positive.

The research appeared in the May 30 edition of the peer-reviewed American Journal of Neurodegeneration.

Explore further: Potential new drug target in Lou Gehrig's disease

Related Stories

Potential new drug target in Lou Gehrig's disease

November 14, 2011
Two proteins conspire to promote a lethal neurological disease, according to a study published online this week in the Journal of Experimental Medicine.

Recommended for you

Druglike molecules produced by gut bacteria can affect gut, immune health

November 23, 2017
Stanford researchers found that manipulating the gut microbe Clostridium sporogenes changed levels of molecules in the bloodstreams of mice and, in turn, affected their health.

Study explores whole-body immunity

November 21, 2017
Over the next few months, millions of people will receive vaccinations in the hope of staving off the flu—and the fever, pain, and congestion that come with it.

Drug could cut transplant rejection

November 21, 2017
A diabetes drug currently undergoing development could be repurposed to help end transplant rejection, without the side-effects of current immunosuppressive drugs, according to new research by Queen Mary University of London ...

Atopic eczema—one size does not fit all

November 21, 2017
Researchers from the UK and Netherlands have identified five distinct subgroups of eczema, a finding that helps explain how the condition can affect people at different stages of their lives.

Breast milk found to protect against food allergy

November 20, 2017
Eating allergenic foods during pregnancy can protect your child from food allergies, especially if you breastfeed, suggests new research from Boston Children's Hospital. The study, published online today in the Journal of ...

Zika-related nerve damage caused by immune response to the virus

November 20, 2017
The immune system's response to the Zika virus, rather than the virus itself, may be responsible for nerve-related complications of infection, according to a Yale study. This insight could lead to new ways of treating patients ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.