How immune system, inflammation may play role in Lou Gehrig's disease

June 5, 2012
In the ALS spinal cord, a patient's own immune cells called macrophages (green) impact neurons (live neurons =red, which are also marked by an asterisk (*), and dead neurons = magenta that are marked by an arrow. Credit: University of California, Los Angeles

In an early study, UCLA researchers found that the immune cells of patients with amyotrophic lateral sclerosis (ALS), or Lou Gehrig's disease, may play a role in damaging the neurons in the spinal cord. ALS is a disease of the nerve cells in the brain and spinal cord that control voluntary muscle movement.

Specifically, the team found that inflammation instigated by the immune system in ALS can trigger macrophages — cells responsible for gobbling up waste products in the brain and body — to also ingest healthy neurons. During the inflammation process, motor neurons, whether healthy or not, are marked for clean-up by the macrophages.

In addition, the team found that a lipid mediator called resolvin D1, which is made in the body from the omega-3 fatty acid DHA, was able to "turn off" the inflammatory response that made the macrophages so dangerous to the neurons. Resolvin D1 blocked the inflammatory proteins being produced by the macrophages, curbing the inflammation process that marked the for clean-up. It inhibited key inflammatory proteins like IL-6 with a potency 1,100 times greater than the parent molecule, DHA. DHA has been shown in studies to be neuroprotective in a number of conditions, including stroke and Alzheimer's disease.

For the study, the team isolated from blood samples taken from both ALS patients and controls and cells from deceased donors.

The study findings on resolvin D1 may offer a new approach to attenuating the inflammation in ALS. Currently, there is no effective way of administering resolvins to patients, so clinical research with resolvin D1 is still several years away. The parent molecule, DHA, is available in stores, although it has not been tested in clinical trials for ALS. Studies with DHA are in progress for Alzheimer's disease, stroke and brain injury and have been mostly positive.

The research appeared in the May 30 edition of the peer-reviewed American Journal of Neurodegeneration.

Explore further: Potential new drug target in Lou Gehrig's disease

Related Stories

Potential new drug target in Lou Gehrig's disease

November 14, 2011
Two proteins conspire to promote a lethal neurological disease, according to a study published online this week in the Journal of Experimental Medicine.

Recommended for you

Genetic immune deficiency could hold key to severe childhood infections

July 18, 2017
A gene mutation making young children extremely vulnerable to common viruses may represent a new type of immunodeficiency, according to a University of Queensland researcher.

What are the best ways to diagnose and manage asthma?

July 18, 2017
What are the best ways to diagnose and manage asthma in adults? This can be tricky because asthma can stem from several causes and treatment often depends on what is triggering the asthma.

Large multi-ethnic study identifies many new genetic markers for lupus

July 17, 2017
Scientists from an international consortium have identified a large number of new genetic markers that predispose individuals to lupus.

Study finds molecular explanation for struggles of obese asthmatics

July 17, 2017
A large, bouquet-shaped molecule called surfactant protein A, or SP-A, may explain why obese asthma patients have harder-to-treat symptoms than their lean and overweight counterparts, according to a new study led by scientists ...

Team identifies potential cause for lupus

July 14, 2017
Leading rheumatologist and Feinstein Institute for Medical Research Professor Betty Diamond, MD, may have identified a protein as a cause for the adverse reaction of the immune system in patients suffering from lupus. A better ...

Immunosuppression underlies resistance to anti-angiogenic therapy

July 14, 2017
A Massachusetts General Hospital (MGH) research team has identified a novel mechanism behind resistance to angiogenesis inhibitors - drugs that fight cancer by suppressing the formation of new blood vessels. In their report ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.