Researchers find link between neuritin gene activity and stress induced depression

June 27, 2012 by Bob Yirka report

(Medical Xpress) -- Research teams from the US and Korea have together been studying depression and other mood disorders and have found that chronic stress can block a gene whose job it is to maintain healthy neuron connections in the brain, which in turn can lead to mental ailments. In lab experiments they have found that rats show lowered levels of neuritin gene activity when driven to depression, and that rats with depression tended to do better when given treatment that boosted neuritin activity, suggesting that another means of treating people with mood disorders might be on the horizon. The team has published a paper describing their experiments and results in the Proceedings of the National Academy of Sciences.

Prior research has shown that people who suffer from tend to lose plasticity, or the ability to organize new information in their brains, specifically in the hippocampus, leading to a degree of atrophy, a condition that makes it difficult for such people to recover from their disorder even when given drugs to help treat the symptoms. Until now however, most drugs that are used to treat mood disorders work by blocking the re-absorption of the serotonin. In this new research, the team looked at the role of neuritin instead.

In lab experiments they first caused rats to become depressed by exposing them to a constantly , e.g. putting them alone in a sterile environment, limiting food and alternating their night/day cycle. After about three weeks the rats became lethargic and unresponsive to normal stimuli. Once that was done, they tested them for the degree of neuritin gene activity, and found that such levels had dropped in all of them. They then treated some of the rates with standard mood stabilizers which helped reduced symptoms as it has in previous research. But then, they treated some of the other rats by infecting them with a virus that causes an increase in neuritin gene activity and found doing so helped the rats just as much as standard therapies and also served to protect their brains from atrophy.

In another experiment the team forced lowered neuritin gene activity in a group of rats but didn’t subject them to stress and found the rats became just as depressed as had those in the first experiment.

The team notes that while their results look very promising on paper, assuming the same results would occur with people is premature as there are differences in biology. Their results do however support the notion that stress itself contributes to mood disorders, which is information people can use to help them live more mentally healthy lives right now.

Explore further: New discoveries on depression

More information: Neuritin produces antidepressant actions and blocks the neuronal and behavioral deficits caused by chronic stress, PNAS, Published online before print June 25, 2012, doi: 10.1073/pnas.1201191109

Abstract
Decreased neuronal dendrite branching and plasticity of the hippocampus, a limbic structure implicated in mood disorders, is thought to contribute to the symptoms of depression. However, the mechanisms underlying this effect, as well as the actions of antidepressant treatment, remain poorly characterized. Here, we show that hippocampal expression of neuritin, an activity-dependent gene that regulates neuronal plasticity, is decreased by chronic unpredictable stress (CUS) and that antidepressant treatment reverses this effect. We also show that viral-mediated expression of neuritin in the hippocampus produces antidepressant actions and prevents the atrophy of dendrites and spines, as well as depressive and anxiety behaviors caused by CUS. Conversely, neuritin knockdown produces depressive-like behaviors, similar to CUS exposure. The ability of neuritin to increase neuroplasticity is confirmed in models of learning and memory. Our results reveal a unique action of neuritin in models of stress and depression, and demonstrate a role for neuroplasticity in antidepressant treatment response and related behaviors.

Related Stories

New discoveries on depression

February 28, 2012
(Medical Xpress) -- During depression, the brain becomes less plastic and adaptable, and thus less able to perform certain tasks, like storing memories. Researchers at Karolinska Institutet have now traced the brain's lower ...

Failure in nerve-fiber navigation corrected in zebrafish model, suggests possibility of drug treatment

June 6, 2011
Spinal muscular atrophy (SMA) is the leading genetic cause of death in children under 2, with no treatment other than supportive care. In the Proceedings of the National Academy of Sciences, researchers at Children's Hospital ...

Study offers clues as to why teens are more susceptible to addiction and mental illness

January 17, 2012
(Medical Xpress) -- Researchers at the University of Pittsburgh’s Moghaddam Laboratory, led by biochemist Bita Moghaddam have found after studying rat brains that minor differences in activity levels in certain brain ...

Recommended for you

Firing of neurons changes the cells that insulate them

August 22, 2017
Through their pattern of firing, neurons influence the behavior of the cells that upon maturation will provide insulation of neuronal axons, according to a new study publishing 22 August in the open access journal PLOS Biology ...

Activating brain region creates intense desire to use cocaine

August 22, 2017
Researchers have identified a portion of the brain that intensifies one's desire for certain rewards—in this case, mimicking addiction to cocaine.

Brain region mediates pleasure of eating

August 22, 2017
Providing the body with food is essential for survival. But even when full, we can still take pleasure in eating. Researchers at the Max Planck Institute of Neurobiology in Martinsried and the Friedrich Miescher Institute ...

Study suggests serotonin may worsen tinnitus

August 22, 2017
Millions of people suffer from the constant sensation of ringing or buzzing in the ears known as tinnitus, creating constant irritation for some and severe anxiety for others. Research by scientists at OHSU shows why a common ...

Chronic stress induces fatal organ dysfunctions via a new neural circuit

August 22, 2017
Hokkaido University researchers revealed that fatal gut failure in a multiple sclerosis (MS) mouse model under chronic stress is caused by a newly discovered nerve pathway. The findings could provide a new therapeutic strategy ...

Contact in sports may lead to differences in the brains of young, healthy athletes

August 22, 2017
People who play contact sports show changes to their brain structure and function, with sports that have greater risk of body contact showing greater effects on the brain, a new study has found.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.