Potential new approach to regenerating skeletal muscle tissue

June 1, 2012

An innovative strategy for regenerating skeletal muscle tissue using cells derived from the amniotic fluid is outlined in new research published by scientists at the UCL Institute of Child Health.

The paper shows that damaged muscle tissues can be treated with cells derived from the fluids which surround the fetus during development, leading to satisfactory regeneration and muscle activity. The treatment resulted in longer survival in mice affected by a muscle variant of spinal muscular atrophy. This is the first time that regeneration of diseased muscle tissue has been obtained using cells derived from .

The research appears in the journal , is authored by Dr Paolo de Coppi (UCL Institute of Child Health and surgeon at Great Ormond Street Hospital) and colleagues in Paris and Padova, and represents an impressive development in the growing field of regenerative medicine.

Muscle derived stem cells are presently considered the best source for . However they cannot be used to treat muscular dystrophies because the stem cells themselves are affected in individuals with these conditions. Due to this challenge, other cell sources have been explored but so far no definitive treatment has been successful.

De Coppi's team has demonstrated that intravenous transplantation of amniotic fluid stem (AFS) cells enhances the muscle strength and improves the survival rate of the affected animals. This is the first study to demonstrate the functional and stable integration of AFS cells into skeletal muscle, highlighting their value as a cell source for the treatment of muscular dystrophies.

However, the research is still at a relatively early stage as the work has only been carried out in animal models.

Dr Coppi said: " is a genetic disease affecting one in 6,000 births. It is currently incurable and in its most severe form children with the condition may not survive long into childhood. Children with a less severe form face the prospect of progressive muscle wasting, loss of mobility and motor function. There is an urgent need for improved treatments.

"We are excited by this potential new approach for regenerating skeletal muscle tissue, but much more research is needed. We now need to perform more in-depth studies with human AFS cells in mouse models to see if it is viable to use cells derived from the amniotic fluid to treat diseases affecting ."

Explore further: Stem cell foundation for muscular dystrophy treatment

More information: onlinelibrary.wiley.com/doi/10 … 2/stem.1134/abstract

Related Stories

Stem cell foundation for muscular dystrophy treatment

July 14, 2011
Research at the Australian Regenerative Medicine Institute (ARMI) at Monash University could lay the groundwork for new muscular dystrophy treatments.

Recommended for you

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.