The role of dopamine in sleep regulation

June 19, 2012

A group of Spanish researchers has discovered a new function of the neurotransmitter dopamine in controlling sleep regulation. Dopamine acts in the pineal gland, which is central to dictating the 'circadian rhythm' in humans—the series of biological processes that enables brain activity to adapt to the time of the day (that is, light and dark cycles). The researchers, from the CIBERNED (Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas), dependant on the Spanish Ministry of Economy and Competitiveness through the Carlos III Health Institute, and from the Faculty of Biology of the University of Barcelona, publish their findings 19 June in the open-access journal PLoS Biology.

All animals respond to cycles of light and dark with various patterns in sleeping, feeding, body temperature alterations, and other biological functions. The pineal gland translates the light signals received by the retina into a language understandable to the rest of the body, for example through the synthesis of the hormone melatonin, which is produced and released at night and which helps to regulate the body's metabolic activity during sleep.

Another hormone, norepinephrine, is involved in regulating this synthesis and release of melatonin in the pineal gland. The functions of norepinephrine are carried out via binding to its receptors in the membranes of cells. It was long believed that these norepinephrine receptors all acted independently of other proteins, but in the new study, researchers have discovered that this is not the case. In fact, the receptors collaborate with other receptors forming 'heteromers'.

When dopamine then interacts with its receptors, it inhibits the effects of norepinephrine—which means a decrease in the production and release of melatonin. Interestingly, the researchers found that these dopamine receptors only appear in the pineal gland towards the end of the night, as the dark period closes. Therefore, the researchers conclude, the formation of these heteromers is an effective mechanism to stop melatonin production when the day begins and to 'wake up' the brain.

"These results are interesting as they demonstrate a mechanism in which dopamine, normally increased at times of stimulation, can directly inhibit production and release of a molecule, melatonin, that induces drowsiness and prepares the body for sleep," explained Dr McCormick.

The discovery of this new function of dopamine could be extremely useful when designing new treatments to help mitigate circadian rhythm disturbances, such as those related to jet lag, those found among people who work at night, and in cases of disorders in general which, according to the World Health Organisation, affect 40% of the world's population. Circadian rhythm disturbances can also produce alterations in body mass index, and can lead to behavioural disorders that affect 1 in 4 people at least once in their lifetime, in which melatonin levels are related.

Explore further: Tireless research reveals secrets of the 'sleep hormone'

More information: González S, Moreno-Delgado D, Moreno E, Pérez-Capote K, Franco R, et al. (2012) Circadian-Related Heteromerization of Adrenergic and Dopamine D4 Receptors Modulates Melatonin Synthesis and Release in the Pineal Gland. PLoS Biol 10(6): e1001347. doi:10.1371/journal.pbio.1001347

Related Stories

Tireless research reveals secrets of the 'sleep hormone'

December 13, 2011
A team from the Research Institute of the McGill University Health Centre (RI-MUHC) and McGill University has made a major breakthrough by unraveling the inner workings of melatonin, also known as the "sleep hormone." The ...

Modern shift work pattern potentially less harmful to health

September 27, 2011
Recent research suggests that the modern day-day-night-night shift pattern for shift workers may not be as disruptive or as potentially carcinogenic as older, more extreme shift patterns.

Recommended for you

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

New vaccine production could improve flu shot accuracy

July 24, 2017
A new way of producing the seasonal flu vaccine could speed up the process and provide better protection against infection.

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.