Researchers uncover new clues about the origin of cancer

June 6, 2012
Different types of tumor arise, depending on the mutation of certain proteins involved in DNA damage response, cell cycle check-points and apoptosis. Credit: Travis H. Stracker (IRB Barcelona)

A study by Travis H. Stracker, researcher at the Institute for Research in Biomedicine (IRB Barcelona), in collaboration with scientists at the Memorial Sloan Kettering Cancer Center (MSKCC) in New York, reveals new information about the origin of tumors.

In this study, published in the journal (PNAS), the scientists postulate that the initiation of a tumor and the type and aggressivity of the same depend on a specific combination of defects in several processes that safeguard cell integrity, such as DNA repair pathways and check-points. The study also demonstrates that mice with a high degree of chromosomal instability and defective programmed cell death (apoptosis), two hallmarks of cancer, rarely develop tumors.

"Whether or not a tumor develops depends on the moment of the cell cycle in which the damage occurs, which repair pathways components are affected, and which others are impaired in terms of apoptosis and cell cycle arrest", explains the North-American Travis H. Stracker, head of the "Genomic Instability and Cancer" group and an expert in DNA repair pathways and its implications on human health. In this study, H. Stracker and his team report on some of these combinations for the initiation of cancer and in different kinds of tissue. "The paper points out that our understanding of which aspects of damage response promote tumorigenesis and where they play a role in the process needs to be investigated further because it shows that it has been generalized and that there is a lot of specifics that are not at all clear."

Different types of tumor arise, depending on the mutation of certain proteins involved in DNA damage response, cell cycle check-points and apoptosis. Credit: Travis H. Stracker (IRB Barcelona)

The researchers utilized mice carrying mutations in key involved in cancer. Next, they combined them with other mutations affecting cell cycle checkpoints or apoptosis until they hit upon the combinations that are sufficient to initiate tumorigenesis or to generate certain types of tumors. "It is like deconstructing cancer to find the factors responsible for it appearing", says H. Stracker.

During DNA replication in a dividing cell there is a series of checkpoints to test that duplication is taking place properly. If the cell detects errors in any of these phases, cell growth is halted and highly complex DNA repair processes are triggered. If the repair is defective and the cell accumulates many genomic errors, "watch-out" proteins step in, such as tumor suppressor p53. Such proteins activate (apoptosis) or cell cycle arrest (senescence). "A very complex network of pathways and proteins are involved", explains the researcher. "This study demonstrates that genomic instability per se is not sufficient to initiate a tumor and that we cannot generalize. We need to study the origin of different kinds of cancer in much greater depth and although it is as difficult as trying to find a needle in a haystack, we are slowly identifying the parts on which we should focus", he goes on to explain. The detection of the main players that cause different kinds of could be of great interest for the design of new diagnostic tools and specific treatments.

Related Stories

Recommended for you

No dye: Cancer patients' gray hair darkened on immune drugs

July 21, 2017
Cancer patients' gray hair unexpectedly turned youthfully dark while taking novel drugs, and it has doctors scratching their heads.

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.