Generating dopamine via cell therapy for Parkinson's disease

July 2, 2012, Journal of Clinical Investigation

In Parkinson's disease, the loss of dopamine-producing cells in the midbrain causes well-characterized motor symptoms. Though embryonic stem cells could potentially be used to replace dopaminergic (DA) neurons in Parkinson's disease patients, such cell therapy options must still overcome technical obstacles before the approach is ready for the clinic. Embryonic stem cell-based transplantation regimens carry a risk of introducing inappropriate cells or even cancer-prone cells.

To develop cell purification strategies to minimize these risks, Dr. Lorenza Studer and colleagues at Memorial Sloan Kettering Cancer Center in New York developed three different mouse lines to fluorescently label dopaminergic neurons at early, mid, and late stages of differentiation.

Their data suggest that mouse induced to the mid stage of neuronal differentiation are best suited for transplantation to replace dopaminergic neurons. Further, their work identified new genes associated with each stage of neuronal differentiation.

Their results in the system help define the differentiation stage and specific attributes of embryonic stem cell-derived, dopamine-generating cells that hold promise for cell therapy applications.

Explore further: Scientists report first step in strategy for cell replacement therapy in Parkinson's disease

More information: Identification of embryonic stem cell–derived midbrain dopaminergic neurons for engraftment, Journal of Clinical Investigation.

Related Stories

Scientists report first step in strategy for cell replacement therapy in Parkinson's disease

January 24, 2012
Induced pluripotent stem cells (iPSC) are a promising avenue for cell replacement therapy in neurologic diseases. For example, mouse and human iPSCs have been used to generate dopaminergic (DA) neurons that improve symptoms ...

Recommended for you

A new therapeutic avenue for Parkinson's disease

January 23, 2018
Systemic clearing of senescent astrocytes prevents Parkinson's neuropathology and associated symptoms in a mouse model of sporadic disease, the type implicated in 95% of human cases. Publishing in Cell Reports, researchers ...

Investigators eye new target for treating movement disorders

January 19, 2018
Blocking a nerve-cell receptor in part of the brain that coordinates movement could improve the treatment of Parkinson's disease, dyskinesia and other movement disorders, researchers at Vanderbilt University have reported.

Parkinson's disease 'jerking' side effect detected by algorithm

January 8, 2018
A mathematical algorithm that can reliably detect dyskinesia, the side effect from Parkinson's treatment that causes involuntary jerking movements and muscle spasms, could hold the key to improving treatment and for patients ...

New brainstem changes identified in Parkinson's disease

January 4, 2018
A pioneering study has found that patients with Parkinson's disease have more errors in the mitochondrial DNA within the brainstem, leading to increased cell death in that area.

Caffeine level in blood may help diagnose people with Parkinson's disease

January 3, 2018
Testing the level of caffeine in the blood may provide a simple way to aid the diagnosis of Parkinson's disease, according to a study published in the January 3, 2018, online issue of Neurology, the medical journal of the ...

Researchers shed light on why exercise slows progression of Parkinson's disease

December 22, 2017
While vigorous exercise on a treadmill has been shown to slow the progression of Parkinson's disease in patients, the molecular reasons behind it have remained a mystery.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.